2024届海南省海口市华侨中学高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届海南省海口市华侨中学高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届海南省海口市华侨中学高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届海南省海口市华侨中学高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届海南省海口市华侨中学高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南省海口市华侨中学高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.设是定义在上的奇函数,且当时,,则()A. B.C. D.3.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为()A. B.C. D.4.已知函数,若有且仅有两个不同实数,,使得则实数的值不可能为A. B.C. D.5.函数图像大致为()A. B.C. D.6.A. B.C.1 D.7.下列函数中,既是奇函数,又在区间上单调递增的是()A. B.C D.8.函数,的图象大致是()A. B.C. D.9.已知正实数满足,则最小值为A. B.C. D.10.化简

的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则的值为___________.12.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.13.直线与直线平行,则实数的值为_______.14.已知幂函数的图象经过点(16,4),则k-a的值为___________15.在下列四个函数中:①,②,③,④.同时具备以下两个性质:(1)对于定义域上任意x,恒有;(2)对于定义域上的任意、,当时,恒有的函数是______(只填序号)16.函数,其中,,的图象如图所示,求的解析式____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,圆(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值18.对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”满足函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}(Ⅰ)设f(x)=x2-2,求集合A和B;(Ⅱ)若f(x)=x2-a,且满足∅A=B,求实数a的取值范围19.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.20.某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,第次改良工艺后所排放的废气中含有的污染物数量为,则可建立函数模型,其中是指改良工艺的次数.已知,(参考数据:).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?21.已知函数求函数的最小正周期与对称中心;求函数的单调递增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】分别讨论充分性与必要性,可得出答案.详解】由题意,,显然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要条件.故选:A.【题目点拨】本题考查充分不必要条件,考查不等式的性质,属于基础题.2、D【解题分析】根据奇函数的性质求函数值即可.【题目详解】故选:D3、C【解题分析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和4、D【解题分析】利用辅助角公式化简,由,可得,根据在上有且仅有两个最大值,可求解实数的范围,从而可得结果【题目详解】函数;由,可得,因为有且仅有两个不同的实数,,使得所以在上有且仅有两个最大值,因为,,则;所以实数的值不可能为,故选D【题目点拨】本题主要考查辅助角公式的应用、三角函数的图象与性质的应用问题,也考查了数形结合思想,意在考查综合应用所学知识解答问题的能力,属于基础题5、B【解题分析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【题目详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B6、A【解题分析】由题意可得:本题选择A选项.7、你8、A【解题分析】判断函数的奇偶性和对称性,以及函数在上的符号,利用排除法进行判断即可【题目详解】解:函数,则函数是奇函数,排除D,当时,,则,排除B,C,故选:A【题目点拨】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性以及函数值的对应性,结合排除法是解决本题的关键.难度不大9、A【解题分析】由题设条件得,,利用基本不等式求出最值【题目详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【题目点拨】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值10、C【解题分析】根据两角和的余弦公式可得:,故答案为C.二、填空题:本大题共6小题,每小题5分,共30分。11、1或【解题分析】由诱导公式、二倍角公式变形计算【题目详解】,所以或,时,;时,故答案为:1或12、【解题分析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【题目详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.13、【解题分析】根据直线一般式,两直线平行则有,代入即可求解.【题目详解】由题意,直线与直线平行,则有故答案为:【题目点拨】本题考查直线一般式方程下的平行公式,属于基础题.14、【解题分析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【题目详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.15、③④【解题分析】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.分别判断四个函数的单调性和奇偶性即可.【题目详解】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.①,f(x)奇函数,在定义域不单调;②,f(x)是偶函数,在定义域R内不单调;③,f(x)是奇函数,且在定义域R上单调递减;④,满足为奇函数,且根据指数函数性质可知其在定义域R上为减函数.综上,满足条件(1)(2)的函数有③④.故答案为:③④.16、【解题分析】首先根据函数的最高点与最低点求出A,b,然后由图像求出函数周期从而计算出,再由函数过点求出.【题目详解】,,,解得,则,因为函数过点,所以,,解得因为,所以,.故答案为:【题目点拨】本题考查由图像确定正弦型函数的解析式,第一步通过图像的最值确定A,b的值,第二步通过周期确定的值,第三步通过最值点或者非平衡位置的点以及三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或.(2)【解题分析】(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【题目详解】解:(1)由题意知圆心的坐标为,半径,当过点M的直线的斜率不存在时,方程为由圆心到直线的距离知,此时,直线与圆相切当过点M的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为故过点M的圆的切线方程为或(2)∵圆心到直线的距离为,∴,解得【题目点拨】本题主要考查了直线与圆相切与相交时的求解.注意直线过定点时分析斜率不存在与存在两种情况.直线与圆相切用圆心到直线的距离等于半径列式,直线与圆相交用垂径定理列式.属于中档题.18、(Ⅰ)A={-1,2};B={-,-1,,3}(Ⅱ)[-,]【解题分析】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;求解x可得集合B.(Ⅱ)理解A=B时,它表示方程x2-a=x与方程(x2-a)2-a=x有相同的实根,根据这个分析得出关于a的方程求出a的值【题目详解】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;即x4-2x3-6x2+6x+9=0,即(x+1)(x-3)(x2-3)=0,解得x=-1,x=3,x=,x=-,故B={-,-1,,3};(Ⅱ)∵∅A=B,∴x2-a=x有实根,即x2-x-a=0有实根,则△=1+4a≥0,解得a≥-由(x2-a)2-a=x,即x4-2ax2-x+a2-a=0的左边有因式x2-x-a,从而有(x2-x-a)(x2+x-a+1)=0∵A=B,∴x2+x-a+1=0要么没有实根,要么实根是方程x2-x-a=0的根若x2+x-a+1=0没有实根,则a<;若x2+x-a+1=0有实根且实根是方程x2-x-a=0的根,由于两个方程的二次项系数相同,一次项系数不同,故此时x2+x-a+1=0有两个相等的根-,此时a=方程x2-x-a=0可化为:方程x2-x-=0满足条件,故a的取值范围是[-,]【题目点拨】本题考查对新概念的理解和运用的能力,同时考查了集合间的关系和方程根的相关知识,解题过程中体现了分类讨论的数学思想19、(1)(2)【解题分析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【题目详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【题目点拨】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.20、(1);(2)6.【解题分析】(1)将,代入函数模型解解得答案;(2)结合题意,解出指数不等式即可.【小问1详解】根据题意,,所以该函数模型的解析式为.【小问2详解】由(1),令,则,而,则.综上:至少进行6次改良

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论