2024届陕西省西安市高新一中、交大附中、师大附中高一上数学期末考试试题含解析_第1页
2024届陕西省西安市高新一中、交大附中、师大附中高一上数学期末考试试题含解析_第2页
2024届陕西省西安市高新一中、交大附中、师大附中高一上数学期末考试试题含解析_第3页
2024届陕西省西安市高新一中、交大附中、师大附中高一上数学期末考试试题含解析_第4页
2024届陕西省西安市高新一中、交大附中、师大附中高一上数学期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省西安市高新一中、交大附中、师大附中高一上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则tanθ等于()A.1 B.-1C.3 D.-32.下列函数中,与函数有相同图象的一个是A. B.C. D.3.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-44.已知函数,若实数,则函数的零点个数为()A.0 B.1C.2 D.35.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切6.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.7.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.18.设函数,则的值为()A. B.C. D.189.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.10.若函数的最大值为,最小值为-,则的值为A. B.2C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若方程有四个不同的实根,满足,则值为__________.12.已知函数,若,则实数的取值范围是__________.13.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______14.若幂函数的图象过点,则______.15.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】16.函数恒过定点________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①函数的图象向右平移个单位长度得到的图像,图像关于对称;②函数这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若在上的值域为,求a的取值范围;(2)求函数在上的单调递增区间.18.(1)已知,求;(2)已知,,,是第三象限角,求的值.19.求值:(1);20.甲、乙两地相距1000千米,某货车从甲地匀速行驶到乙地,速度为v千米/小时(不得超过120千米/小时).已知该货车每小时的运输成本m(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的关系是;固定部分y2为81元(1)根据题意可得,货车每小时的运输成本m=________,全程行驶的时间为t=________;(2)求该货车全程的运输总成本与速度v的函数解析式;(3)为了使全程的运输总成本最小,该货车应以多大的速度行驶?21.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由诱导公式及同角三角函数基本关系化简原式即可求解.【题目详解】由已知即故选:D【题目点拨】本题考查诱导公式及同角三角函数基本关系,属于简单题.2、B【解题分析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【题目详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【题目点拨】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.3、A【解题分析】令,由对称轴为,可得,解出,并验证即可.【题目详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【题目点拨】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.4、D【解题分析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项.【题目详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个,故选:D.【题目点拨】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题.多选题5、C【解题分析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离6、A【解题分析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【题目点拨】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.7、B【解题分析】根据解析式可直接求出最小正周期.【题目详解】函数的最小正周期为.故选:B.8、B【解题分析】根据分段函数的不同定义域对应的函数解析式,进行代入计算即可.【题目详解】,故选:B9、A【解题分析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【题目详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.10、D【解题分析】当时取最大值当时取最小值∴,则故选D二、填空题:本大题共6小题,每小题5分,共30分。11、11【解题分析】画出函数图像,利用对数运算及二次函数的对称性可得答案.【题目详解】函数的图像如图:若方程有四个不同的实根,满足,则必有,得,.故答案为:11.12、【解题分析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【题目详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【题目点拨】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.13、[-,-)∪(,]【解题分析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【题目详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【题目点拨】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题14、【解题分析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【题目详解】设,则,得,,因此,.故答案为.【题目点拨】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.15、【解题分析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【题目详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【题目点拨】本题考查了空间中点的坐标与应用问题,是基础题16、【解题分析】根据函数图象平移法则和对数函数的性质求解即可【题目详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),,.【解题分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数,(1)由,得到,根据由正弦函数图像,即可求解;(2)根据函数正弦函数的形式,求得,,进而得出函数的单调递增区间.【题目详解】方案一:选条件①由函数的图象相邻两条对称轴之间的距离为,可得,解得,所以,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.方案二:选条件②:由,因为函数的图象相邻两条对称轴之间的距离为,可得,所以,可得,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.【题目点拨】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为或的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.18、(1);(2).【解题分析】(1)根据诱导公式化简函数后代入求解即可;(2)根据同角三角函数的基本关系求出,利用两角差的余弦公式求解即可.【题目详解】(1)(2)由,,得又由,,得所以.19、(1)(2)3【解题分析】(1)利用指数幂的运算性质和根式和指数幂的互化公式计算即可(2)利用对数的运算性质计算即可求得结果.【小问1详解】原式【小问2详解】原式20、(1);;(2)(0<v≤120);(3)v=90km/h.【解题分析】(1)根据货车每小时的运输成本等于可变部分加上固定部分即可得出答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论