2024届湖南省株洲市高一上数学期末综合测试模拟试题含解析_第1页
2024届湖南省株洲市高一上数学期末综合测试模拟试题含解析_第2页
2024届湖南省株洲市高一上数学期末综合测试模拟试题含解析_第3页
2024届湖南省株洲市高一上数学期末综合测试模拟试题含解析_第4页
2024届湖南省株洲市高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省株洲市高一上数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.2.某圆的一条弦长等于半径,则这条弦所对的圆心角为A. B.C. D.13.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.6614.设y1=0.4,y2=0.5,y3=0.5,则()A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y25.已知,,则下列不等式中恒成立的是()A. B.C. D.6.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.7.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.8.若,则的值是()A. B.C. D.19.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.201310.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若存在,使得,则的取值范围为_____________.12.函数f(x),若f(a)=4,则a=_____13.已知函数,若正实数,满足,则的最小值是____________14.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________15.设函数即_____16.设函数,若关于的不等式的解集为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值与最小值之差为,求实数a的值;(2)若,当a>1时,解不等式.18.已知函数,其中.(1)求函数的定义域;(2)若函数的最大值为2.求a的值.19.已知关于一元二次不等式的解集为.(1)求函数的最小值;(2)求关于的一元二次不等式的解集.20.设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.21.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【题目详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B2、C【解题分析】直接利用已知条件,转化求解弦所对的圆心角即可.【题目详解】圆的一条弦长等于半径,故由此弦和两条半径构成的三角形是等边三角形,所以弦所对的圆心角为.故选C.【题目点拨】本题考查扇形圆心角的求法,是基本知识的考查.3、A【解题分析】由题意得出,再取对数得出k的值.【题目详解】由题意可知,所以,解得故选:A4、B【解题分析】本题考查幂函数与指数函数的单调性考查幂函数,此为定义在上的增函数,所以,则;考查指数函数,此为定义在在上的减函数,所以,所以所以有故正确答案为5、D【解题分析】直接利用特殊值检验及其不等式的性质判断即可.【题目详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.6、B【解题分析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【题目详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.7、B【解题分析】根据三视图画出原图,从而计算出最长的棱长.【题目详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B8、D【解题分析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D9、B【解题分析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为10、A【解题分析】根据二次根式的性质求出函数的定义域即可【题目详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【题目点拨】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【题目详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【题目点拨】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.12、1或8【解题分析】当时,,当时,,分别计算出的值,然后在检验.【题目详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【题目点拨】本题考查分段函数根据函数值求自变量,属于基础题.13、9【解题分析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【题目详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:914、①②③【解题分析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法15、-1【解题分析】结合函数的解析式求解函数值即可.【题目详解】由题意可得:,则.【题目点拨】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值16、【解题分析】根据不等式的解集可得、、为对应方程的根,分析两个不等式对应方程的根,即可得解.【题目详解】由于满足,即,可得,所以,,所以,方程的两根分别为、,而可化为,即,所以,方程的两根分别为、,,且不等式解集为,所以,,解得,则,因此,.故答案为:.【题目点拨】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解、、分别为方程、的根,而两方程含有公共根,进而可得出关于实数的等式,即可求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2或;(2)或.【解题分析】(1)对a值分类讨论,根据单调性列出最值之差表达式即可求解;(2)由函数的奇偶性、单调性脱去给定不等式中的法则“”,转化为一元二次不等式,求解即得.【题目详解】(1)①当,f(x)在[-1,1]上单调递增,,解得,②当时,f(x)在[-1,1]上单调递减,,解得,综上可得,实数a的值为2或.(2)由题可得定义域为,且,所以为上的奇函数;又因为,且,所以在上单调递增;所以,或,所以不等式的解集为或.【题目点拨】解抽象的函数不等式,分析对应函数的奇偶性和单调性是解决问题的关键.18、(1);(2).【解题分析】(1)根据对数的性质进行求解即可;(2)根据对数的运算性质,结合配方法、对数复合函数的单调性进行求解即可.【题目详解】(1)要使函数有意义,则有,解得,所以函数的定义域为.(2)函数可化.因为,所.因,所以,即,由,解得.19、(1)(2)【解题分析】(1)由题意可得,解不等式求出的取值范围,再利用基本不等式求的最小值;(2)不等式化为,比较和的大小,即可得出不等式的解集.【小问1详解】因为关于一元二次不等式的解集为,所以,化简可得:,解得:,所以,所以,当且仅当即,的最小值为.【小问2详解】不等式,可化为,因为,所以,所以该不等式的解集为.20、(1);(2)(-∞,-2)∪(0,2)【解题分析】(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,综上所述解集是(-∞,-2)∪(0,2).21、(1)(2)3333辆/小时【解题分析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论