2024届甘肃省示范名校数学高一上期末质量跟踪监视试题含解析_第1页
2024届甘肃省示范名校数学高一上期末质量跟踪监视试题含解析_第2页
2024届甘肃省示范名校数学高一上期末质量跟踪监视试题含解析_第3页
2024届甘肃省示范名校数学高一上期末质量跟踪监视试题含解析_第4页
2024届甘肃省示范名校数学高一上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省示范名校数学高一上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点作圆的两条切线,切点分别为,,则所在直线的方程为()A. B.C. D.2.若命题“,使得”为真命题,则实数a的取值范围是()A. B.C. D.3.设,则的大小关系为()A. B.C. D.4.设,,则()A. B.C. D.5.已知,且,则的最小值为()A.3 B.4C.6 D.96.已知集合,,则集合A. B.C. D.7.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.8.已知集合,则()A. B.C. D.9.若,则下列不等式一定成立的是()A. B.C. D.10.手机屏幕面积与手机前面板面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值通常在0~1之间.若设计师将某款手机的屏幕面积和手机前面板面积同时增加相同的数量,升级为一款新手机,则该款手机的“屏占比”和升级前相比()A.不变 B.变小C.变大 D.变化不确定二、填空题:本大题共6小题,每小题5分,共30分。11.计算______.12.函数为奇函数,当时,,则______13.已知单位向量与的夹角为,向量的夹角为,则cos=_______14.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.15.已知函数(且)的图象过定点,则点的坐标为______16.设奇函数对任意的,,有,且,则的解集___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)解关于不等式;(2)若对于任意,恒成立,求的取值范围.18.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围19.已知.(1)化简;(2)若是第三象限角,且,求的值.20.已知函数,(1)若,求的单调区间;(2)若有最大值3,求实数的值.21.一种专门占据内存的计算机病毒,能在短时间内感染大量文件,使每个文件都不同程度地加长,造成磁盘空间的严重浪费.这种病毒开机时占据内存2KB,每3分钟后病毒所占内存是原来的2倍.记x分钟后的病毒所占内存为yKB.(1)求y关于x的函数解析式;(2)如果病毒占据内存不超过1GB(1GB=210

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先由圆方程得到圆心和半径,求出的长,以及的中点坐标,得到以为直径的圆的方程,由两圆方程作差整理,即可得出所在直线方程.【题目详解】因为圆的圆心为,半径为,所以,的中点为,则以为直径的圆的方程为,所以为两圆的公共弦,因此两圆的方法作差得所在直线方程为,即.故选:B.【题目点拨】本题主要考查求两圆公共弦所在直线方法,属于常考题型.2、B【解题分析】在上有解,利用基本不等式求出的最小值即可.【题目详解】即在上有解,所以在上有解,由,当且仅当,即时取得等号,故故选:B3、D【解题分析】利用指数函数与对数函数的性质,即可得出的大小关系.【题目详解】因为,,,所以.故选:D.【题目点拨】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;(3)借助于中间值,例如:0或1等.4、A【解题分析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【题目详解】解:因为,,所以,又+,所以,所以.故选:A.5、A【解题分析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【题目详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【题目点拨】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.6、B【解题分析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【题目详解】由一元二次方程的解法化简集合,或,,或,故选B.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.7、B【解题分析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【题目详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B8、A【解题分析】对集合B中的分类讨论分析,再根据集合间的关系判断即可【题目详解】当时,,当时,,当时,,所以,或,或因为,所以.故选:A9、B【解题分析】对于ACD,举例判断即可,对于B,利用不等式的性质判断【题目详解】解:对于A,令,,满足,但,故A错误,对于B,∵,∴,故B正确,对于C,当时,,故C错误,对于D,令,,满足,而,故D错误.故选:B.10、C【解题分析】做差法比较与的大小即可得出结论.【题目详解】设升级前的“屏占比”为,升级后的“屏占比”为(,).因为,所以升级后手机“屏占比”和升级前相比变大,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、7【解题分析】根据对数与指数的运算性质计算即可得解.【题目详解】解:.故答案为:7.12、【解题分析】根据对数运算和奇函数性质求解即可.【题目详解】解:因为函数为奇函数,当时,所以.故答案为:13、【解题分析】根据题意,由向量的数量积计算公式可得•、||、||的值,结合向量夹角计算公式计算可得答案【题目详解】根据题意,单位向量,的夹角为,则•1×1×cos,32,3,则•(32)•(3)=92+22﹣9•,||2=(32)2=92+42﹣12•7,则||,||2=(3)2=922﹣6•7,则||,故cosβ.故答案为【题目点拨】本题主要考查向量的数量积的运算和向量的夹角的计算,意在考察学生对这些知识的掌握水平和分析推理能力.14、##【解题分析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【题目详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.15、【解题分析】令,结合对数的运算即可得出结果.【题目详解】令,得,又因此,定点的坐标为故答案为:16、【解题分析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【题目详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【题目点拨】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)【解题分析】(1)将不等式,转化成,分别讨论当时,当时,当时,不等式的解集.(2)将对任意,恒成立问题,转化为,恒成立,再利用均值不等式求的最小值,从而得到a的取值范围.【题目详解】(1)因为不等式所以即当时,解得当时,解得当时,解得综上:当时,不等式的解集是当时,不等式的解集是当时不等式的解集是(2)因为对于任意,恒成立所以,恒成立所以,恒成立令因为当且仅当,即时取等号所以【题目点拨】本题主要考查了含参一元二次不等式的解法以及恒成立问题,还考查了转化化归的思想及运算求解的能力,属于中档题.18、(1)(2)或【解题分析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合与集合之间的关系,即可完成求解.【小问1详解】当时,集合,集合,所以;【小问2详解】i.当选择条件①时,集合,当时,,舍;当集合时,即集合,时,,此时要满足,则,解得,结合,所以实数m的取值范围为或;ii.当选择条件②时,要满足是的充分条件,则需满足在集合时,集合是集合的子集,即,解得,所以实数m取值范围为或;iii.当选择条件③时,要使得,使得,那么需满足在集合时,集合是集合子集,即,解得,所以实数m的取值范围为或;故,实数m的取值范围为或.19、(1);(2).【解题分析】(1)根据诱导公式化简即可得答案;(2)根据诱导公式,结合已知条件得,再根据同角三角函数关系求值即可.【题目详解】(1).(2)∵,∴,又是第三象限角,∴,故.【题目点拨】本题考查诱导公式化简求值,考查运算能力,基础题.20、(1)递减区间为,递增区间;(2).【解题分析】(1)当时,设,根据指数函数和二次函数的单调性,结合复合函数的单调性,即可求解;(2)由题意,函数,分,和三种情况讨论,结合复合函数的单调性,即可求解.【题目详解】(1)当时,,设,则函数开口向下,对称轴方程为,所以函数在单调递增,在单调递减,又由指数函数在上为单调递减函数,根据复合函数的单调性,可得函数在单调递减,在单调递增,即函数的递减区间为,递增区间.(2)由题意,函数,①当时,函数,根据复合函数的单调性,可得函数在上为单调递增函数,此时函数无最大值,不符合题意;②当时,函数,根据复合函数单调性,可得函数在在单调递增,在单调递减,当时,函数取得最大值,即,解得;③当时,函数,根据复合函数的单调性,可得函数在在单调递减,在单调递增,此时函数无最大值,不符合题意.综上可得,实数的值为.【题目点拨】本题主要考查了指数函数的图象与性质,以及复合函数的单调性的判定及应用,其中解答中熟记指数函数的图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论