版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省莆田市第九中学高一数学第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.32.函数y=的单调增区间为A.(-,) B.(,+)C.(-1,] D.[,4)3.已知,,,那么a,b,c的大小关系为()A. B.C. D.4.从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,等级性考试成绩位次由高到低分为A、B、C、D、E,各等级人数所占比例依次为:A等级15%,B等级40%,C等级30%,D等级14%,E等级1%.现采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得B等级的学生人数为()A.30 B.60C.80 D.285.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.6.函数的最小值和最大值分别为()A. B.C. D.7.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.28.若关于x的不等式的解集为,则关于函数,下列说法不正确的是()A.在上单调递减 B.有2个零点,分别为1和3C.在上单调递增 D.最小值是9.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.10.若函数的最大值为,最小值为-,则的值为A. B.2C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.比较大小:______cos()12.已知函数,则=____________13.已知,则_________.14.在函数的图像上,有______个横、纵坐标均为整数的点15.若,则_____16.函数fx=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知f(x)是定义在R上偶函数,且当x≥0时,(1)用定义法证明f(x)在(0,+∞)上单调递增;(2)求不等式f(x)>0的解集.18.汕头市某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?19.某乡镇为打造成“生态农业特色乡镇”,决定种植某种水果,该水果单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,单株成本投入(含施肥、人工等)为元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?20.已知角的终边落在直线上,且.(1)求的值;(2)若,,求的值.21.已知函数(其中)的图象过点,且其相邻两条对称轴之间的距离为,(1)求实数的值及的单调递增区间;(2)若,求的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.2、C【解题分析】令,,()在为增函数,在上是增函数,在上是减函数;根据复合函数单调性判断方法“同增异减”可知,函数y=的单调增区间为选C.【题目点拨】有关复合函数的单调性要求根据“同增异减”的法则去判断,但在研究函数的单调性时,务必要注意函数的定义域,特别是含参数的函数单调性问题,注意对参数进行讨论,指、对数问题针对底数a讨论两种情况,分0<a<1和a>1两种情况,既要保证函数的单调性,又要保证真数大于零.3、B【解题分析】根据指数函数单调性比较大小.【题目详解】因为在上是增函数,又,所以,所以,故选B.【题目点拨】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数(且):若,则是上增函数;若,则是上减函数.4、C【解题分析】根据分层抽样的概念即得【题目详解】由题可知该样本中获得B等级的学生人数为故选:C5、C【解题分析】根据函数零点的存在性定理可得函数零点所在的区间【题目详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【题目点拨】本题主要考查函数的零点的存在性定理的应用,属于基础题6、C【解题分析】2.∴当时,,当时,,故选C.7、D【解题分析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【题目详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【题目点拨】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题8、C【解题分析】根据二次函数性质逐项判断可得答案.【题目详解】方程的两个根是1和3,则函数图象的对称轴方程是,是开口向上的抛物线,A正确;C错误;函数的两个零点是1和3,因此B正确;又,,,即,为最小值,D正确故选:C.9、C【解题分析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【题目详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.10、D【解题分析】当时取最大值当时取最小值∴,则故选D二、填空题:本大题共6小题,每小题5分,共30分。11、>【解题分析】利用诱导公式化简后,根据三角函数的单调性进行判断即可【题目详解】cos(π)=cos(﹣4π)=cos()=cos,cos(π)=cos(﹣4π)=cos()=cos,∵y=cosx在(0,π)上为减函数,∴coscos,即cos(π)>cos(π)故答案为>【题目点拨】本题主要考查函数的大小比较,根据三角函数的诱导公式以及三角函数的单调性是解决本题的关键,属于基础题12、【解题分析】由函数解析式,先求得,再求得代入即得解.【题目详解】函数,则==,故答案为.【题目点拨】本题考查函数值的求法,属于基础题.13、【解题分析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在14、3【解题分析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【题目详解】因为,所以函数在R上单调递减,又,,,,且当时,,当时,令,则,综上,函数的图像上,有3个横、纵坐标均为整数的点故答案为:3.15、【解题分析】首先求函数,再求的值.【题目详解】设,则所以,即,,.故答案为:16、0【解题分析】先令t=cosx,则t∈-1,1,再将问题转化为关于【题目详解】解:令t=cosx,则则f(t)=t则函数f(t)在-1,1上为减函数,则f(t)即函数y=cos2x-2故答案为:0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)或【解题分析】(1)先设,然后利用作差法比较与的大小即可判断,(2)当时,,然后结合分式不等式可求,再设,根据已知可求,然后再求解不等式【题目详解】解:(1)是定义在上偶函数,且当时,,设,则,所以,所以在上单调递增,(2)当时,,整理得,,解得或(舍,设,则,,整理得,,解得,(舍或,综上或故不等式的解集或18、(1)2400(元);(2)应将售价定为125元,最大销售利润是2500元.【解题分析】(1)由销售利润=单件成本×销售量,即可求商家降价前每星期销售利润;(2)由题意得,根据二次函数的性质即可知最大销售利润及对应的售价.【题目详解】(1)由题意,商家降价前每星期的销售利润为(元);(2)设售价定为元,则销售利润.当时,有最大值2500.∴应将售价定为125元,最大销售利润是2500元.19、(1);(2)4千克,505元.【解题分析】(1)用销售额减去成本投入得出利润的解析式;(2)判断的单调性,及利用基本不等式求出的最大值即可【题目详解】解:(1)由题意得:,(2)由(1)中得(i)当时,;(ii)当时,当且仅当时,即时等号成立.因为,所以当时,,所以当施用肥料为4千克时,种植该果树获得的最大利润是505元.【题目点拨】方法点睛:该题考查的是有关函数的应用问题,解题方法如下:(1)根据题意,结合利润等于收入减去支出,得到函数解析式;(2)利用分段函数的最大值等于每段上的最大值中的较大者,结合求最值的方法得到结果.20、(1)(2)【解题分析】(1)易角是第三象限的角,从而确定的符号,再由同角三角函数的关系式求得,然后利用二倍角公式得解;(2)可得,再求得的值,根据,由两角差的余弦公式,展开运算即可【小问1详解】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诉讼代理与庭审辩护工作总结
- 幼儿捉迷藏课程设计
- 英雄之旅课程设计理念
- 酒店行业销售工作总结
- IT行业员工薪酬福利制度优化
- 2025年高考历史一轮复习之世界多极化
- 如何将愿景转化为年度工作计划
- 2023-2024学年福建省福州市福清市高一(下)期中语文试卷
- 汉字偏旁部首名称大全表
- 文化行业市场拓展总结
- 特种设备“日管控、周排查、月调度”表格
- 重点关爱学生帮扶活动记录表
- 2021年10月自考00850广告设计基础试题及答案含解析
- 结构化面试表格
- 地热能资源的潜力及在能源领域中的应用前景
- 2023版:美国眼科学会青光眼治疗指南(全文)
- 家长会课件:小学寒假家长会课件
- 变刚度单孔手术机器人系统设计方法及主从控制策略
- 儿童室外游戏机创业计划书
- 2024年浙江宁波永耀供电服务有限公司招聘笔试参考题库含答案解析
- 温州食堂承包策划方案
评论
0/150
提交评论