安徽省芜湖市普通高中2024届高一数学第一学期期末联考模拟试题含解析_第1页
安徽省芜湖市普通高中2024届高一数学第一学期期末联考模拟试题含解析_第2页
安徽省芜湖市普通高中2024届高一数学第一学期期末联考模拟试题含解析_第3页
安徽省芜湖市普通高中2024届高一数学第一学期期末联考模拟试题含解析_第4页
安徽省芜湖市普通高中2024届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省芜湖市普通高中2024届高一数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则下列正确的是()A. B.C. D.2.已知a>0,那么2+3a+4A.23 B.C.2+23 D.3.平行四边形中,若点满足,,设,则A. B.C. D.4.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,5.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则6.已知正数、满足,则的最小值为A. B.C. D.7.函数的图像大致为()A. B.C. D.8.已知正弦函数f(x)的图像过点,则的值为()A.2 B.C. D.19.下列函数是偶函数的是()A. B.C. D.10.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则____________12.函数的值域是__________13.若直线与互相垂直,则点到轴的距离为__________14.设,,则______15.若函数是定义在上的严格增函数,且对一切x,满足,则不等式的解集为___________.16.函数y=的单调递增区间是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,,.(1)求,;(2)若,求;(3)若,求的取值范围.18.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围19.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图(1)所示;B产品的利润y与投资x的算术平方根成正比,其关系如图(2)所示(注:利润y与投资x的单位均为万元)(1)分别求A,B两种产品的利润y关于投资x的函数解析式;(2)已知该企业已筹集到200万元资金,并将全部投入A,B两种产品的生产①若将200万元资金平均投入两种产品的生产,可获得总利润多少万元?②如果你是厂长,怎样分配这200万元资金,可使该企业获得总利润最大?其最大利润为多少万元?20.已知函数.(1)判断函数在上的单调性,并用定义证明;(2)记函数,证明:函数在上有唯一零点.21.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】计算得到,,,得到答案.【题目详解】,,.故.故选:.【题目点拨】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.2、D【解题分析】利用基本不等式求解.【题目详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D3、B【解题分析】画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案【题目详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【题目点拨】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题4、D【解题分析】直接利用集合运算法则得出结果【题目详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【题目点拨】本题考查集合运算,注意集合中元素的的互异性,无序性5、C【解题分析】结合特殊值、差比较法确定正确选项.【题目详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C6、B【解题分析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【题目详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【题目点拨】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题7、A【解题分析】通过判断函数的奇偶性排除CD,通过取特殊点排除B,由此可得正确答案.【题目详解】∵∴函数是偶函数,其图像关于轴对称,∴排除CD选项;又时,,∴,排除B,故选.8、C【解题分析】由题意结合诱导公式有:.本题选择C选项.9、D【解题分析】利用偶函数的性质对每个选项判断得出结果【题目详解】A选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数,A选项错误B选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数C选项:函数定义域为,,故函数为奇函数D选项:函数定义域为,,故函数是偶函数故选D【题目点拨】本题考查函数奇偶性的定义,在证明函数奇偶性时需注意函数的定义域;还需掌握:奇函数加减奇函数为奇函数;偶函数加减偶函数为偶函数;奇函数加减偶函数为非奇非偶函数;奇函数乘以奇函数为偶函数;奇函数乘以偶函数为奇函数;偶函数乘以偶函数为偶函数10、B【解题分析】根据全称命题的否定为特称命题可得出.【题目详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解题分析】分析:先根据四分之一周期求根据最高点求.详解:因为因为点睛:已知函数的图象求解析式(1).(2)由函数周期求(3)利用“五点法”中相对应的特殊点求.12、【解题分析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【题目详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.13、或.【解题分析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.14、【解题分析】由,根据两角差的正切公式可解得【题目详解】,故答案为【题目点拨】本题主要考查了两角差的正切公式的应用,属于基础知识的考查15、【解题分析】根据题意,将问题转化为,,再根据单调性解不等式即可得答案.【题目详解】解:因为函数对一切x,满足,所以,,令,则,即,所以等价于,因为函数是定义在上的严格增函数,所以,解得所以不等式的解集为故答案为:16、【解题分析】设函数,再利用复合函数的单调性原理求解.【题目详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)(3)【解题分析】(1)先可求出,再利用交集,并集运算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式组求出的范围即可.【题目详解】(1)由已知得,所以,;(2)由(1)得,当时,,所以.;(3)因为,所以,解得.【题目点拨】本题考查集合的交并补的运算,考查集合的包含关系的含义,是基础题.18、(1)见解析.(2)[2-,1)∪(1,2+]【解题分析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+]点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.19、(1)A产品的利润y关于投资x的函数解析式为:;B产品的利润y关于投资x的函数解析式为:.(2)①万元;②当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元.【解题分析】(1)利用待定系数法,结合函数图象上特殊点,运用代入法进行求解即可;(2)①:利用代入法进行求解即可;②利用换元法,结合二次函数的单调性进行求解即可.【小问1详解】因为A产品的利润y与投资x成正比,所以设,由函数图象可知,当时,,所以有,所以;因为B产品的利润y与投资x的算术平方根成正比,所以设,由函数图象可知:当时,,所以有,所以;【小问2详解】①:将200万元资金平均投入两种产品的生产,所以A产品的利润为,B产品的利润为,所以获得总利润为万元;②:设投入B产品的资金为万元,则投入A产品的资金为万元,设企业获得的总利润为万元,所以,令,所以,当时,即当时,有最大值,最大值为,所以当投入B产品的资金为万元,投入A产品的资金为万元,该企业获得的总利润最大,其最大利润为万元.20、(1)在上单调递增,证明见解析;(2)证明见解析.【解题分析】(1)根据题意,结合作差法,即可求证;(2)根据题意,结合单调性与零点存在性定理,即可求证.【小问1详解】函数在上单调递增.证明:任取,则,因为,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论