阜新市重点中学2024届数学高一上期末考试模拟试题含解析_第1页
阜新市重点中学2024届数学高一上期末考试模拟试题含解析_第2页
阜新市重点中学2024届数学高一上期末考试模拟试题含解析_第3页
阜新市重点中学2024届数学高一上期末考试模拟试题含解析_第4页
阜新市重点中学2024届数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阜新市重点中学2024届数学高一上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设则()A. B.C. D.2.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定3.已知函数,,则函数的值域为()A. B.C. D.4.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22925.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.26.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)7.函数的单调减区间为()A. B.C. D.8.已知函数则函数的零点个数为()A.0 B.1C.2 D.39.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.过点且平行于直线的直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,且,则_______.12.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.13.已知,且,则__14.已知直线:,直线:,若,则__________15.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)16.已知角α∈(-,0),cosα=,则tanα=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市为发展农业经济,鼓励农产品加工,助推美丽乡村建设,成立了生产一种饮料的食品加工企业,每瓶饮料的售价为14元,月销售量为9万瓶.(1)根据市场调查,若每瓶饮料的售价每提高1元,则月销售量将减少5000瓶,要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为多少元?(2)为了提高月销售量,该企业对此饮料进行技术和销售策略改革,提高每瓶饮料的售价到元,并投入万元作为技术革新费用,投入2万元作为固定宣传费用.试问:技术革新后,要使革新后的月销售收入不低于原来的月销售收入与总投入之和,求月销售量(万瓶)的最小值,以及取最小值时的每瓶饮料的售价.18.若两个函数和对任意,都有,则称函数和在上是疏远的(1)已知命题“函数和在上是疏远的”,试判断该命题的真假.若该命题为真命题,请予以证明;若为假命题,请举反例;(2)若函数和在上是疏远的,求整数a的取值范围19.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)20.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.21.已知函数,()的最小周期为.(1)求的值及函数在上的单调递减区间;(2)若函数在上取得最小值时对应的角度为,求半径为3,圆心角为的扇形的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由指数函数、对数函数的单调性,并与0,1比较可得答案【题目详解】由指数、对数函数的性质可知:,,所以有.故选:D2、A【解题分析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【题目详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【题目点拨】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题3、B【解题分析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【题目详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B4、A【解题分析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【题目详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.5、B【解题分析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【题目详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【题目点拨】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题6、C【解题分析】由题意分别计算出集合的补集和集合,然后计算出结果.【题目详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C7、A【解题分析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解.【题目详解】由不等式,即,解得,即函数的定义域为,令,可得其图象开口向下,对称轴的方程为,当时,函数单调递增,又由函数在定义域上为单调递减函数,结合复合函数的单调性的判定方法,可得函数的单调减区间为.故选:A.8、C【解题分析】的零点个数等于的图象与的图象的交点个数,作出函数f(x)和的图像,根据图像即可得到答案.【题目详解】的零点个数等于的图象与的图象的交点个数,由图可知,的图象与的图象的交点个数为2.故选:C.9、B【解题分析】根据充分必要性分别判断即可.【题目详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.10、A【解题分析】设直线的方程为,代入点的坐标即得解.【题目详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.12、【解题分析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意13、【解题分析】利用二倍角公式可得,再由同角三角函数的基本关系即可求解.【题目详解】解:因为,整理可得,解得,或2(舍去),由于,可得,,所以,故答案为:14、1【解题分析】根据两直线垂直时,系数间满足的关系列方程即可求解.【题目详解】由题意可得:,解得:故答案为:【题目点拨】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.15、(1);(2)5年;(3)17年.【解题分析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年16、【解题分析】利用同角三角函数的平方关系和商数关系,即得解【题目详解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)18元;(2),此时每瓶饮料的售价为16元.【解题分析】(1)先求售价为元时的销售收入,再列不等式求解;(2)由题意有解,参变分离后求的最小值.【题目详解】(1)设每平售价为元,依题意有,即,解得:,所以要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为18元;(2)当时,,有解,当时,即,,当且仅当时,即时等号成立,,因此月销售量要达到16万瓶时,才能使技术革新后的月销售收入不低于原来的月销售收入与总投入之和,此时售价为16元.【题目点拨】关键点点睛:本题考查函数的实际应用问题,关键是读懂题意,并能抽象出函数关系,第二问的关键是理解当时,有能使不等式成立,即有解,求的取值范围.18、(1)该命题为假命题,反例为:当时,.(2).【解题分析】(1)利用“疏远函数”的定义直接判断即可,以或举例即可;(2)由函数的定义域可确定实数,构造函数,可证当时,恒成立,即函数和在上是疏远的【小问1详解】该命题为假命题,反例为:当时,.【小问2详解】由函数的定义域可知,故记∵在上单调递增,在上单调递减,∴在上单调递增,∴当时,,不满足;当时,,不满足;当时,,∴当时,故.19、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解题分析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以驾车.20、(1),.(2)证明见解析【解题分析】(1)根据向量的运算法则,即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论