2024届河南南阳市数学高一上期末监测模拟试题含解析_第1页
2024届河南南阳市数学高一上期末监测模拟试题含解析_第2页
2024届河南南阳市数学高一上期末监测模拟试题含解析_第3页
2024届河南南阳市数学高一上期末监测模拟试题含解析_第4页
2024届河南南阳市数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南南阳市数学高一上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A. B.C. D.2.已知函数,则()A.5 B.2C.0 D.13.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.4.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语5.设点关于坐标原点的对称点是B,则等于()A.4 B.C. D.26.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,将角的终边按顺时针方向旋转后经过点,则()A. B.C. D.7.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内8.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.9.已知函数的图象的对称轴为直线,则()A. B.C. D.10.设a>0,b>0,化简的结果是()A. B.C. D.-3a二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数在区间上单调递减,则___________.12.集合的非空子集是________________13.已知平面,,直线,若,,则直线与平面的位置关系为______.14.函数的定义域是___________.15.已知函数,的最大值为3,最小值为2,则实数的取值范围是________.16.已知函数是定义在上的奇函数,若时,,则时,__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式的解集为或.(1)求b和c的值;(2)求不等式的解集.18.设关于x二次函数(1)若,解不等式;(2)若不等式在上恒成立,求实数m的取值范围19.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围20.已知函数(且)的图象过点.(1)求函数的解析式;(2)解不等式.21.已知函数.(1)当时,解不等式;(2)设,若,,都有,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】易知为非奇非偶函数,故排除选项A,因为,,故排除选项B、D,而在定义域上既是奇函数又是单调递增函数.故选C.2、C【解题分析】由分段函数,选择计算.【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题.3、C【解题分析】分别判断每个函数的定义域和奇偶性即可.【题目详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.4、B【解题分析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【题目详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.5、A【解题分析】求出点关于坐标原点的对称点是B,再利用两点之间的距离即可求得结果.【题目详解】点关于坐标原点的对称点是故选:A6、A【解题分析】根据角的旋转与三角函数定义得,利用两角和的正切公式求得,然后待求式由二倍公式,“1”的代换,变成二次齐次式,转化为的式子,再计算可得【题目详解】解:将角的终边按顺时针方向旋转后所得的角为,因为旋转后的终边过点,所以,所以.所以.故选:A7、B【解题分析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【题目详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【题目点拨】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明8、A【解题分析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【题目点拨】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.9、A【解题分析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【题目详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【题目点拨】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.10、D【解题分析】由分数指数幂的运算性质可得结果.【题目详解】因为,,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据幂函数定义求出值,再根据单调性确定结果【题目详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:12、【解题分析】结合子集的概念,写出集合A的所有非空子集即可.【题目详解】集合的所有非空子集是.故答案为:.13、【解题分析】根据面面平行的性质即可判断.【题目详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【题目点拨】本题考查面面平行的性质,属于基础题.14、【解题分析】利用根式、分式的性质求函数定义域即可.【题目详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.15、【解题分析】画出函数的图像,对称轴为,函数在对称轴的位置取得最小值2,令,可求得,或,进而得到参数范围.【题目详解】函数的图象是开口朝上,且以直线为对称的抛物线,当时,函数取最小值2,令,则,或,若函数在上的最大值为3,最小值为2,则,故答案为:.16、【解题分析】函数是定义在上的奇函数,当时,当时,则,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)【解题分析】(1)利用二次不等式的解集与相应的二次方程的根的关系,判断出1,2是相应方程的两个根,利用韦达定理求出,的值(2)将,的值代入不等式,将不等式因式分解,求出二次不等式的解集【题目详解】解:(1)不等式的解集为或,2是方程的两个根由根与系数的关系得到:;;(2)因为,所以所以,所以所以的解集为18、(1);(2).【解题分析】(1)由题设有,解一元二次不等式求解集即可.(2)由题意在上恒成立,令并讨论m范围,结合二次函数的性质求参数范围.【小问1详解】由题设,等价于,即,解得,所以该不等式解集为.【小问2详解】由题设,在上恒成立令,则对称轴且,①当时,开口向下且,要使对恒成立,所以,解得,则②当时,开口向上,只需,即综上,19、(1)(2)【解题分析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.20、(1)(2)【解题分析】(1)把已知点的坐标代入求解即可;(2)直接利用函数单调性即可求出结论,注意真数大于0的这一隐含条件【小问1详解】因为函数(且)的图象过点.,所以,即;【小问2详解】因为单调递增,所以,即不等式的解集是21、(1),(2)【解题分析】(1)由同角关系原不等式可化为,化简可得,结合正弦函数可求其解集,(2)由条件可得在上的最大值小于或等于在上的最小值,利用单调性求的最大值,利用换元法,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论