浙江诸暨市牌头中学2024届高一数学第一学期期末学业质量监测试题含解析_第1页
浙江诸暨市牌头中学2024届高一数学第一学期期末学业质量监测试题含解析_第2页
浙江诸暨市牌头中学2024届高一数学第一学期期末学业质量监测试题含解析_第3页
浙江诸暨市牌头中学2024届高一数学第一学期期末学业质量监测试题含解析_第4页
浙江诸暨市牌头中学2024届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江诸暨市牌头中学2024届高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则=A.2 B.C. D.12.如图,正方体的棱长为,,是线段上的两个动点,且,则下列结论错误的是A.B.直线、所成的角为定值C.∥平面D.三棱锥的体积为定值3.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③4.已知扇形OAB的周长为12,圆心角大小为,则该扇形的面积是()cm.A.2 B.3C.6 D.95.已知直线过,,且,则直线的斜率为()A. B.C. D.6.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.7.函数的定义域是A. B.C. D.8.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发 B.乙比甲跑的路程多C.甲比乙先到达终点 D.甲、乙两人的速度相同9.函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称10.在正内有一点,满足等式,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.____12.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______13.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.14.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.15.求值:__________.16.已知,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,设(1)求的值;(2)是否存在这样的负实数k,使对一切恒成立,若存在,试求出k取值集合;若不存在,说明理由.18.已知函数.(1)当时,恒成立,求实数的取值范围;(2)是否同时存在实数和正整数,使得函数在上恰有个零点?若存在,请求出所有符合条件的和的值;若不存在,请说明理由.19.已知向量,.(1)求的值;(2)若向量满足,,求向量的坐标.20.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围21.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】.故选.2、B【解题分析】在A中,∵正方体∴AC⊥BD,AC⊥,∵BD∩=B,∴AC⊥平面,∵BF⊂平面,∴AC⊥BF,故A正确;在B中,异面直线AE、BF所成的角不为定值,因为当F与重合时,令上底面顶点为O,点E与O重合,则此时两异面直线所成的角是;当E与重合时,此时点F与O重合,则两异面直线所成的角是,此二角不相等,故异面直线AE、BF所成的角不为定值.故B错误在C中,∵EF∥BD,BD⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;在D中,∵AC⊥平面,∴A到平面BEF的距离不变,∵B到EF的距离为1,,∴△BEF的面积不变,∴三棱锥A-BEF的体积为定值,故D正确;点睛:解决此类题型的关键是结合空间点线面的位置关系一一检验.3、B【解题分析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【题目详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.4、D【解题分析】设扇形的半径和弧长,根据周长和圆心角解方程得到,再利用扇形面积公式计算即得结果.【题目详解】设扇形OAB的半径r,弧长l,则周长,圆心角为,解得,故扇形面积为.故选:D5、A【解题分析】利用,求出直线斜率,利用可得斜率乘积为,即可求解.【题目详解】设直线斜率为,直线斜率为,因为直线过,,所以斜率为,因为,所以,所以,故直线的斜率为.故选:A6、D【解题分析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【题目详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【题目点拨】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题7、D【解题分析】由,求得的取值集合得答案详解】解:由,得,函数定义域是故选:D【题目点拨】本题考查函数的定义域及其求法,关键是明确正切函数的定义域,属于基础题8、C【解题分析】结合图像逐项求解即可.【题目详解】结合已知条件可知,甲乙同时出发且跑的路程都为,故AB错误;且当甲乙两人跑的路程为时,甲所用时间比乙少,故甲先到达终点且甲的速度较大,故C正确,D错误.故选:C.9、C【解题分析】求得,求出变换后的函数解析式,根据已知条件求出的值,然后利用代入检验法可判断各选项的正误.【题目详解】由题意可得,则,将函数的图象向左平移个单位后,得到函数的图象,由于函数为奇函数,则,所以,,,则,故,因为,,故函数的图象关于直线对称.故选:C.10、A【解题分析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【题目详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解题分析】根据和差公式得到,代入化简得到答案.【题目详解】故答案为:【题目点拨】本题考查了和差公式,意在考查学生的计算能力.12、;【解题分析】因为函数的图象向左平移个单位长度,得到,所以的最小值为13、##-0.5【解题分析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【题目详解】由题设,,,令,可得,即,,所以,,则.故答案为:14、【解题分析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【题目详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【题目点拨】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15、【解题分析】利用诱导公式一化简,再求特殊角正弦值即可.【题目详解】.故答案为:.16、3【解题分析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【题目详解】由题设,,可得,∴.故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解题分析】(1)由题可得,代入即得;(2)由题可得函数,,为奇函数且在上单调递减,构造函数,则可得恒成立,进而可得,对恒成立,即求.【小问1详解】∵函数,,∴,∴.【小问2详解】∵,由,得,又在上单调递减,在其定义域上单调递增,∴在上单调递减,又,∴为奇函数且单调递减;∵,又函数在R上单调递增,∴函数在R上单调递减,又,∴函数为奇函数且单调递减;令,则函数在上单调递减,且为奇函数,由,可得,即恒成立,∴,即,对恒成立,故,即,故存在负实数k,使对一切恒成立,k取值集合为.【题目点拨】关键点点睛:本题的关键是构造奇函数,从而问题转化为,对恒成立,参变分离后即求.18、(1);(2)存在,当时,;当时,.【解题分析】(1)利用三角恒等变换思想得出,令,,由题意可知对任意的,可得出,进而可解得实数的取值范围;(2)由题意可知,函数与直线在上恰有个交点,然后对实数的取值进行分类讨论,考查实数在不同取值下两个函数的交点个数,由此可得出结论.【题目详解】(1),当时,,,则,要使对任意恒成立,令,则,对任意恒成立,只需,解得,实数的取值范围为;(2)假设同时存在实数和正整数满足条件,函数在上恰有个零点,即函数与直线在上恰有个交点.当时,,作出函数在区间上的图象如下图所示:①当或时,函数与直线在上无交点;②当或时,函数与直线在上仅有一个交点,此时要使函数与直线在上有个交点,则;③当或时,函数直线在上有两个交点,此时函数与直线在上有偶数个交点,不可能有个交点,不符合;④当时,函数与直线在上有个交点,此时要使函数与直线在上恰有个交点,则.综上所述,存在实数和正整数满足条件:当时,;当时,.【题目点拨】关键点点睛:本题考查利用函数不等式恒成立求参数,利用函数在区间上的零点个数求参数,解本题第(2)问的关键就是要注意到函数与直线的图象在区间上的图象的交点个数,结合周期性求解.19、(1)7;(2).【解题分析】(1)先计算,再求模即可;(2)设,进而计算,,再根据垂直与共线的坐标关系求解即可.【题目详解】解:(1)因为向量,,所以,所以(2)设,,因为,,所以,解得所以20、(1)(2)【解题分析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论