版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省牡丹江市2024届高一上数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中既是奇函数,又是其定义域上的增函数的是A. B.C. D.2.不等式的解集为,则实数的取值范围是()A. B.C. D.3.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.4.已知函数,若f(a)=10,则a的值是()A.-3或5 B.3或-3C.-3 D.3或-3或55.“”是“为第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1157.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为()A. B.C. D.8.下列函数中,在区间上为减函数的是()A. B.C. D.9.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)10.“当时,幂函数为减函数”是“或2”的()条件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要二、填空题:本大题共6小题,每小题5分,共30分。11.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______12.已知a∈R,不等式的解集为P,且-1∈P,则a的取值范围是____________.13.已知幂函数在为增函数,则实数的值为___________.14.已知为锐角,,,则__________15.已知,写出一个满足条件的的值:______16.已知函数,则使函数有零点的实数的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(Ⅰ)求,;(Ⅱ)若,求实数的取值范围.18.(1)已知求的值(2)已知,且为第四象限角,求的值.19.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?20.如图,在直四棱柱中,底面是边长为2的正方形,分别为线段,的中点.(1)求证:||平面;(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.21.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】对于A,函数的偶函数,不符合,故错;对于B,定义域为,是非奇非偶函数,故错;对于C,定义域R,是奇函数,且是增函数,正确;对于D,是奇函数,但是是减函数,故错考点:本题考查函数的奇偶性和单调性点评:解决本题的关键是掌握初等函数的奇偶性和单调性2、C【解题分析】将不等式的解集为,转化为不等式的解集为R,分和两种情况讨论求解.【题目详解】因为不等式的解集为,所以不等式的解集为R,当,即时,成立;当,即时,,解得,综上:实数的取值范围是故选:C【题目点拨】本题主要考查一元二次不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于基础题.3、C【解题分析】求出幂函数的解析式,然后求解函数值【题目详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:4、A【解题分析】根据分段函数的解析式,分两种情况讨论分别求得或.【题目详解】若,则舍去),若,则,综上可得,或,故选A.【题目点拨】本题主要考查分段函数的解析式、分段函数求自变量,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.5、B【解题分析】利用辅助角公式及正弦函数的性质解三角形不等式,再根据集合的包含关系判断充分条件、必要条件即可;【题目详解】解:由,即,所以,,解得,,即,又第二象限角为,因为真包含于,所以“”是“为第二象限角”的必要不充分条件;故选:B6、D【解题分析】根据第p百分位数的定义直接计算,再判断作答.【题目详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D7、D【解题分析】根据圆心在直线上,设圆心坐标为,然后根据圆C与直线及都相切,由求解.【题目详解】因为圆心在直线上,设圆心坐标为,因为圆C与直线及都相切,所以,解得,∴圆心坐标为,又,∴,∴圆的方程为,故选:D.8、D【解题分析】根据基本初等函数的单调性及复合函数单调性求解.【题目详解】当时,在上单调递减,所以在区间上为增函数;由指数函数单调性知在区间上单调递增;由在区间上为增函数,为增函数,可知在区间上为增函数;知在区间上为减函数.故选:D9、C【解题分析】根据过定点,可得函数过定点.【题目详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【题目点拨】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.10、C【解题分析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.【题目详解】当时,幂函数为减函数,所以有,所以幂函数为减函数”是“或2”的充分不必要条件,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【题目详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:12、【解题分析】把代入不等式即可求解.【题目详解】因为,故,解得:,所以a的取值范围是.故答案为:13、4【解题分析】根据幂函数的定义和单调性,即可求解.【题目详解】解:为递增的幂函数,所以,即,解得:,故答案为:414、【解题分析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【题目详解】,都是锐角,,又,,,,则故答案为:.15、(答案不唯一)【解题分析】利用,可得,,计算即可得出结果.【题目详解】因为,所以,则,或,故答案为:(答案不唯一)16、【解题分析】令,进而作出的图象,然后通过数形结合求得答案.【题目详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】(Ⅰ)由交并补集定义可得;(Ⅱ),说明有公共元素,由这两个集合的形式,知或即可.试题解析:(Ⅰ),,,又,;(Ⅱ)若,则需或,解得或.18、(1);(2).【解题分析】(1)由诱导公式得,进而由,将所求的式子化为二次齐次式,进而得到含的式子,从而得解(2)由,结合角的范围可得解.【题目详解】(1)由,得,所以,.(2),所以,又为第四象限角,所以,所以.19、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解题分析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者)20、(1)见解析;(2)【解题分析】(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.试题解析:(1)连接,在中,分别为线段的中点,∴为中位线,∴,而面,面,∴平面.(2)由(1)知,故即为异面直线与所成的角.∵四棱柱的外接球的表面积为,∴四棱柱的外接球的半径,设,则,解得,在直四棱柱中,∵平面,平面,∴,在中,,∴,∴异面直线与所成的角为.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何提高小学数学课堂练习设计的有效性
- 水利工程项目类保险方案与费率、建设安全生产责任保险事故预防服务指南
- 参加领导干部综合能力研修培训班心得体会
- 青岛2024年09版小学五年级英语第三单元期末试卷
- 第四单元测试卷-2024-2025学年统编版语文九年级上册
- 强乡村医生队伍建设的几点建议
- 2023年非离子表面活性剂资金需求报告
- 【北师】第一次月考B卷(考试版+解析)
- 第一学期数学教学工作计划(35篇)
- 母亲节致员工慰问信(5篇)
- 少先队辅导员笔试题库附有答案
- 2024年入团知识考试题库及答案
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识(2023版)解读
- 婴儿培养箱校准规范
- 2024年共青团入团考试题库(附答案)
- 田径运动会各种记录表格
- 《补贴与反补贴措施协议》对出口信贷的法律规制研究2
- 产科新生儿疫苗接种课件
- 铁道运输实训总结报告
- 企业信息管理概述课件
- 室外健身器材投标方案(技术方案)
评论
0/150
提交评论