




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮北市相山区淮北市第一中学2024届数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣32.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.43.如图,质点在单位圆周上逆时针运动,其初始位置为,角速度为2,则点到轴距离关于时间的函数图象大致为()A. B.C. D.4.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.5.函数y=|x2-1|与y=a的图象有4个交点,则实数a的取值范围是A.(0,) B.(-1,1)C.(0,1) D.(1,)6.已知向量(2,3),(x,2),且⊥,则|23|=()A.2 B.C.12 D.137.设,且,下列选项中一定正确的是()A. B.C. D.8.函数在单调递减,且为奇函数.若,则满足的的取值范围是().A. B.C. D.9.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值810.若函数的最大值为,最小值为-,则的值为A. B.2C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若函数有三个零点,则实数的取值范围是________.12.已知集合,则集合的子集个数为___________.13.已知,,则________.14.函数的零点为_________________.15.计算____________16.已知向量,,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,且.(1)确定函数的解析式并用定义证明在上是增函数(2)解不等式:.18.已知集合,集合(1)当时,求;(2)当时,求m的取值范围19.已知.(1)若能表示成一个奇函数和一个偶函数的和,求和的解析式;(2)若和在区间上都是减函数,求的取值范围;(3)在(2)的条件下,比较和的大小.20.如图,在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边与单位圆交于点,(1)求的值;(2)将射线绕坐标原点按逆时针方向旋转后与单位圆交于点,求的值;(3)若点与关于轴对称,求的值.21.某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润(万元)关于年产量(百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】等价于二次函数的最大值不小于零,即可求出答案.【题目详解】设,,使得不等式成立,须,即,或,解得.故选:D【题目点拨】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.2、C【解题分析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【题目详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【题目点拨】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题3、A【解题分析】利用角速度先求出时,的值,然后利用单调性进行判断即可【题目详解】因为,所以由,得,此时,所以排除CD,当时,越来越小,单调递减,所以排除B,故选:A4、A【解题分析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【题目详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【题目点拨】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体5、C【解题分析】作函数图象,根据函数图像确定实数a的取值范围.【题目详解】作函数图象,根据函数图像得实数a的取值范围为(0,1),选C.【题目点拨】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.6、D【解题分析】由,可得,由向量加法可得,再结合向量模的运算即可得解.【题目详解】解:由向量(2,3),(x,2),且,则,即,即,所以,所以,故选:D.【题目点拨】本题考查了向量垂直的坐标运算,重点考查了向量加法及模的运算,属基础题.7、D【解题分析】举出反例即可判断AC,根据不等式的性质即可判断B,利用作差法即可判断D.【题目详解】解:对于A,当时,不成立,故A错误;对于B,若,则,故B错误;对于C,当时,,故C错误;对于D,,因为,所以,,所以,即,故D正确.故选:D.8、D【解题分析】由已知中函数的单调性及奇偶性,可将不等式化为,解得答案【题目详解】解:由函数为奇函数,得,不等式即为,又单调递减,所以得,即,故选:D.9、B【解题分析】由均值不等式可得答案.【题目详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B10、D【解题分析】当时取最大值当时取最小值∴,则故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】作出函数图象,进而通过数形结合求得答案.【题目详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.12、2【解题分析】先求出然后直接写出子集即可.【题目详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.13、【解题分析】根据已知条件求得的值,由此求得的值.【题目详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【题目点拨】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.14、.【解题分析】解方程即可.【题目详解】令,可得,所以函数的零点为.故答案为:.【题目点拨】本题主要考查求函数的零点,属基础题.15、5【解题分析】由分数指数幂的运算及对数的运算即可得解.【题目详解】解:原式,故答案为:5.【题目点拨】本题考查了分数指数幂的运算及对数的运算,属基础题.16、【解题分析】根据共线向量的坐标表示,列出方程,即可求解.【题目详解】由题意,向量,,因为,可得,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),证明见解析(2)【解题分析】(1)由题意可得,从而可求出,再由,可求出,从而可求出函数的解析式,然后利用单调性的定义证明即可,(2)由于函数为奇函数,所以将转化为,再利用函数为增函数可得,从而求得解集【小问1详解】因为函数是定义在上的奇函数,所以,即,得,所以,因为,所以,解得,所以,证明:任取,且,则,因为,所以,,,所以,即,所以在上是增函数【小问2详解】因为在上为奇函数,所以转化为,因为在上是增函数,所以,解得,所以不等式的解集为18、(1);(2).【解题分析】(1)利用集合的交运算求即可.(2)根据已知,由集合的交集结果可得,即可求m的取值范围【小问1详解】由题设,,而,∴.【小问2详解】由,显然,∴,可得.19、(1)(2)(3)【解题分析】(1)根据函数奇偶性的定义可得出关于和的等式组,即可解得函数和的解析式;(2)利用已知条件求得;(3)化简的表达式,令,分析关于的函数在上的单调性,由此可得出与的大小.【小问1详解】由已知可得,,,所以,,,解得.即.【小问2详解】函数在区间上是减函数,则,解得,又由函数在区间上是减函数,得,则且,所以.【小问3详解】由(2),令,因为函数和在上为增函数,故函数在上为增函数,所以,,而,所以,即.20、(1)(2)(3)【解题分析】(1)由三角函数的定义得到,再根据且点在第一象限,即可求出;(2)依题意可得,再由(1),即可得解;(3)首先求出的坐标,连接交轴于点,即可得到,再利用二倍角公式计算可得;【小问1详解】解:因为角终边与单位圆交于点,且,由三角函数定义,得.因为,所以.因为点在第一象限,所以.【小问2详解】解:因为射线绕坐标原点按逆时针方向旋转后与单位圆交于点,所以.因为,所以.【小问3详解】解:因为点与关于轴对称,所以点的坐标是.连接交轴于点,所以.所以.所以的值是.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运输公司合伙协议书
- 车辆变更担保协议书
- 2025年Msoffice考试面试试题及答案
- 补办空白就业协议书
- 网络文学与传统文学的碰撞试题及答案
- 2025年Msoffice应用场景试题及答案
- 2025年Web设计中的色彩理论试题及答案
- 基于案例的财务成本管理试题及答案
- 法律职业考试题目及答案
- 解析计算机二级Python试题及答案的技巧
- GB 21670-2008乘用车制动系统技术要求及试验方法
- GA/T 1275-2015石油储罐火灾扑救行动指南
- 家务服务员理论考试试题题库及答案
- 交通安全培训课件-道路交通事故十大典型案例-P
- 投标报名登记表格式
- DB4211T12-2022医疗废物暂存间卫生管理规范
- 第二讲公文语言及结构(1语言)分析课件
- 氯氧铋光催化剂的晶体结构
- 低压电气装置的设计安装和检验第三版
- 国际商务管理超星尔雅满分答案
- 监理人员考勤表
评论
0/150
提交评论