安徽省定远县育才中学2024届高一数学第一学期期末经典试题含解析_第1页
安徽省定远县育才中学2024届高一数学第一学期期末经典试题含解析_第2页
安徽省定远县育才中学2024届高一数学第一学期期末经典试题含解析_第3页
安徽省定远县育才中学2024届高一数学第一学期期末经典试题含解析_第4页
安徽省定远县育才中学2024届高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省定远县育才中学2024届高一数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在上的奇函数,,且,则()A. B.C. D.2.的零点所在区间为()A. B.C. D.3.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.4.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.5.若角的终边过点,则等于A. B.C. D.6.如图,正方体中,①与平行;②与垂直;③与垂直以上三个命题中,正确命题的序号是()A.①② B.②③C.③ D.①②③7.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于()参考数据:参考时间轴:A.宋 B.唐C.汉 D.战国8.函数与的图象()A.关于轴对称 B.关于轴对称C.关于原点对称 D.关于直线轴对称9.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度10.设,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正六边形ABCDEF中,记向量,,则向量______.(用,表示)12.《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB和弦AB所围成的图中阴影部分若弧田所在圆的半径为1,圆心角为,则此弧田的面积为____________.13.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________14.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________15.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____16.设向量,,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)用定义证明函数在区间上单调递增;(2)对任意都有成立,求实数的取值范围18.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.19.已知函数为偶函数(1)求实数的值;(2)记集合,,判断与的关系;(3)当时,若函数值域为,求的值.20.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:;条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分21.已知函数的图象过点,且相邻的两个零点之差的绝对值为6(1)求的解析式;(2)将的图象向右平移3个单位后得到函数的图象若关于x的方程在上有解,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【题目详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C2、C【解题分析】根据零点存在性定理进行判断即可【题目详解】,,,,根据零点存在性定理可得,则的零点所在区间为故选C【题目点拨】本题考查零点存性定理,属于基础题3、D【解题分析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【题目详解】因为点在角的终边上,所以故选:D4、C【解题分析】根据题中条件,得到圆的半径,进而可得圆的方程.【题目详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.5、C【解题分析】角终边过点,则,所以.故选C.6、C【解题分析】根据线面平行、线面垂直的判定与性质,即可得到正确答案【题目详解】解:对于①,在正方体中,由图可知与异面,故①不正确对于②,因为,不垂直,所以与不垂直,故②不正确对于③,在正方体中,平面,又∵平面,∴与垂直.故③正确故选:C【题目点拨】此题考查线线平行、线线垂直,考查学生的空间想象能力和对线面平行、线面垂直的判定与性质的理解与掌握,属基础题7、D【解题分析】根据给定条件可得函数关系,取即可计算得解.【题目详解】依题意,当时,,而与死亡年数之间的函数关系式为,则有,解得,于是得,当时,,于是得:,解得,由得,对应朝代为战国,所以可推断该文物属于战国.故选:D8、D【解题分析】函数与互为反函数,然后可得答案.【题目详解】函数与互为反函数,它们的图象关于直线轴对称故选:D9、B【解题分析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B10、C【解题分析】比较a、b、c与0和1的大小即可判断它们之间的大小.【题目详解】,,,故故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】由正六边形的性质:三条不相邻的三边经过平移可成等边三角形,即可得,进而得到结果.【题目详解】由正六边形的性质知:,∴.故答案为:.12、【解题分析】根据题意所求面积,再根据扇形和三角形面积公式,进行求解即可.【题目详解】易知为等腰三角形,腰长为,底角为,,所以,弧田的面积即图中阴影部分面积,根据扇形面积及三角形面积可得:所以.故答案为:.13、38##【解题分析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【题目详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.14、②③④【解题分析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【题目详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【题目点拨】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.15、【解题分析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【题目详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【题目点拨】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.16、【解题分析】,故,故填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)由定义证明即可;(2)求出在上的最大值,即可得出实数的取值范围小问1详解】任取,且,因为,所以,所以,即.所以在上为单调递增【小问2详解】任意都有成立,即.由(1)知在上为增函数,所以时,.所以实数的取值范围是.18、(1)证明见解析(2)【解题分析】本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力(1)证明:∵点E为的中点,且为直径∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴点到平面的距离点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题19、(1);(2);(3).【解题分析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值.试题解析:(1)为偶函数,.(2)由(1)可知:,当时,;当时,.,.(3).上单调递增,,为的两个根,又由题意可知:,且.考点:1、函数的奇偶性及值域;2、对数的运算.20、(1),(2)答案不唯一,具体见解析【解题分析】(1)根据正弦函数的单调增区间建立不等式求解即可得出;(2)选①代入,化简,令,转化为二次函数求值域即可,选择条件②代入化简,令,根据正弦函数的图象与性质求最值即可求解.【小问1详解】函数的单调增区间为()由,,解得,,所以的单调增区间为,【小问2详解】选择条件①:令,因为,所以所以所以,因为在区间上单调递增,所以当时,取得最大值所以当时,取得最大值选择条件②:令,因为,所以所以当时,即时,取得最大值21、(1)(2)【解题分析】(1)结合正弦函数性质,相邻两个零点之差为函数的半个周期,由此得,代入已知点坐标可求得,得解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论