![湖北省部分重点中学2024届高一上数学期末统考试题含解析_第1页](http://file4.renrendoc.com/view/39f6f03b0ebd096d68af42a0784b9873/39f6f03b0ebd096d68af42a0784b98731.gif)
![湖北省部分重点中学2024届高一上数学期末统考试题含解析_第2页](http://file4.renrendoc.com/view/39f6f03b0ebd096d68af42a0784b9873/39f6f03b0ebd096d68af42a0784b98732.gif)
![湖北省部分重点中学2024届高一上数学期末统考试题含解析_第3页](http://file4.renrendoc.com/view/39f6f03b0ebd096d68af42a0784b9873/39f6f03b0ebd096d68af42a0784b98733.gif)
![湖北省部分重点中学2024届高一上数学期末统考试题含解析_第4页](http://file4.renrendoc.com/view/39f6f03b0ebd096d68af42a0784b9873/39f6f03b0ebd096d68af42a0784b98734.gif)
![湖北省部分重点中学2024届高一上数学期末统考试题含解析_第5页](http://file4.renrendoc.com/view/39f6f03b0ebd096d68af42a0784b9873/39f6f03b0ebd096d68af42a0784b98735.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省部分重点中学2024届高一上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.2.设是定义在上的奇函数,且当时,,则()A. B.C. D.3.已知函数的值域为R,则实数的取值范围是()A. B.C. D.4.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.5.若,,,则大小关系为A. B.C. D.6.定义域在R上的函数是奇函数且,当时,,则的值为()A. B.C D.7.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角8.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)9.设,,,则a,b,c的大小关系是()A. B.C. D.10.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点是角终边上一点,且,则的值为__________.12.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.13.已知为锐角,,,则__________14.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.15.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.16.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的一般方程为.(1)求的取值范围;(2)若圆与直线相交于两点,且(为坐标原点),求以为直径的圆的方程.18.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围19.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.20.心理学家通过研究学生的学习行为发现;学生的接受能力与老师引入概念和描述问题所用的时间相关,教学开始时,学生的兴趣激增,学生的兴趣保持一段较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用表示学生掌握和接受概念的能力,x表示讲授概念的时间(单位:min),可有以下的关系:(1)开讲后第5min与开讲后第20min比较,学生的接受能力何时更强一些?(2)开讲后多少min学生的接受能力最强?能维持多少时间?(3)若一个新数学概念需要55以上(包括55)的接受能力以及13min时间,那么老师能否在学生一直达到所需接受能力的状态下讲授完这个概念?21.(1)已知,化简:;(2)已知,证明:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【题目详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【题目点拨】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小2、D【解题分析】根据奇函数的性质求函数值即可.【题目详解】故选:D3、C【解题分析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【题目详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.4、B【解题分析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【题目详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【题目点拨】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.5、D【解题分析】取中间值0和1分别与这三个数比较大小,进而得出结论【题目详解】解:,,,,故选:D.【题目点拨】本题主要考查取中间值法比较数的大小,属于基础题6、A【解题分析】根据函数的奇偶性和周期性进行求解即可.【题目详解】因为,所以函数的周期为,因为函数是奇函数,当时,,所以,故选:A7、D【解题分析】由已知可得即可判断.【题目详解】,即,则且,是第二象限或第三象限角.故选:D.8、B【解题分析】∵,在递增,而,∴函数的零点所在的区间是,故选B.9、C【解题分析】根据幂函数和指数函数的单调性比较判断【题目详解】∵,,∴.故选:C10、B【解题分析】根据初相定义直接可得.【题目详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由三角函数定义可得,进而求解即可【题目详解】由题,,所以,故答案为:【题目点拨】本题考查由三角函数值求终边上的点,考查三角函数定义的应用12、【解题分析】结合正弦函数的性质确定参数值.【题目详解】由图可知,最小正周期,所以,所以.故答案为:.【题目点拨】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.13、【解题分析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【题目详解】,都是锐角,,又,,,,则故答案为:.14、【解题分析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【题目详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.15、①.②.【解题分析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【题目详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【题目点拨】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.16、【解题分析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【题目详解】依题意知:函数为奇函数且周期为2,则,,即.【题目点拨】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据圆的一般方程成立条件,,代入即可求解;(2)联立直线方程和圆的方程,消元得关于的一元二次方程,列出韦达定理,求解中点坐标为圆心,为半径,即可求解圆的方程.【题目详解】(1),,,,,解得:(2),将代入得,,,,半径∴圆的方程为【题目点拨】(1)考查圆的一般方程成立条件,属于基础题;(2)考查直线与圆位置关系,联立方程组法求解,结合一元二次方程韦达定理,综合性较强,难度一般.18、(1)见解析.(2)[2-,1)∪(1,2+]【解题分析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+]点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.19、(1)(2)【解题分析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即得解.【小问1详解】解:设、∴,∴,∴,,又,∴,∴.∵对称轴为直线,,,,∴函数的值域.【小问2详解】解:由(1)可得:∵直线与函数的图像没有公共点∴,当时,∴,∴.20、(1)开讲后第5min比开讲后第20min,学生接受能力强一些.;(2)6min;(3)详见解析.【解题分析】第一步已知自变量值求函数值,比较后给出答案;第二步是二次函数求最值问题;第三步试题解析:(1),,则开讲后第5min比开讲后第20min,学生的接受能力更强一些.](2)当时,,当时,开讲后10min(包括10分钟)学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年安徽省A10联盟高三上学期12月质检考历史试卷
- 2024-2025学年模块综合检测卷(素能提升训练)-勤径学升高中历史选择性必修1同步练测(统编版2019)
- 2025年专利共有协议制定指南
- 2025年企业产权交换策划合同书
- 2025年信贷购买房产转卖合同样本
- 2025年公积金缴纳责任协议
- 2025年人力资源合作与交流协议书
- 2025年促销礼品市场合作框架协议
- 2025年锌材项目规划申请报告模范
- 2025年免疫细胞质量控制与检验检测协议
- 2024年殡仪馆建设项目可行性研究报告(编制大纲)
- 基本药物制度政策培训课件
- 2025年3月日历表(含农历-周数-方便记事备忘)
- 《中国人口老龄化》课件
- 小红书营销师(初级)认证理论知识考试题库(附答案)
- 2025年民营医院工作总结及2025年工作计划
- 2025年九年级物理中考复习计划
- 急诊科护理未来五年规划
- 农业机械设备供货及售后服务方案
- 《跟单信用证统一惯例》UCP600中英文对照版
- 合资经营工厂合同范本
评论
0/150
提交评论