新疆生产建设兵团农八师一四三团一中2024届高一上数学期末质量检测模拟试题含解析_第1页
新疆生产建设兵团农八师一四三团一中2024届高一上数学期末质量检测模拟试题含解析_第2页
新疆生产建设兵团农八师一四三团一中2024届高一上数学期末质量检测模拟试题含解析_第3页
新疆生产建设兵团农八师一四三团一中2024届高一上数学期末质量检测模拟试题含解析_第4页
新疆生产建设兵团农八师一四三团一中2024届高一上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆生产建设兵团农八师一四三团一中2024届高一上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题:的否定为()A. B.C. D.2.函数的定义域是()A. B.C. D.3.已知点是角α的终边与单位圆的交点,则()A. B.C. D.4.定义运算,若函数,则的值域是()A. B.C. D.5.的分数指数幂表示为()A. B.C. D.都不对6.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.7.设,,则a,b,c的大小关系是()A. B.C. D.8.直线和直线的距离是A. B.C. D.9.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.4310.设则的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为_________________12.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】13.两平行线与的距离是__________14.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______15.计算=_______________16.设,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知以点为圆心的圆过点和,线段的垂直平分线交圆于点、,且,(1)求直线的方程;(2)求圆的方程(3)设点在圆上,试探究使的面积为8的点共有几个?证明你的结论18.已知函数(1)求函数的单调区间;(2)求函数图象的对称中心的坐标和对称轴方程19.(1)已知,化简:;(2)已知,证明:20.化简或计算下列各式.(1);(2)21.已知函数,,将图象向右平移个单位,得到函数的图象.(1)求函数的解析式,并求在上的单调递增区间;(2)若函数,求的周期和最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据全称命题的否定是特称命题判断可得.【题目详解】解:命题:为全称量词命题,其否定为;故选:B2、D【解题分析】由函数解析式有意义可得出关于实数的不等式组,由此可求得原函数的定义域.【题目详解】函数有意义,只需且,解得且因此,函数的定义域为.故选:D.3、B【解题分析】根据余弦函数的定义直接进行求解即可.【题目详解】因为点是角α的终边与单位圆的交点,所以,故选:B4、C【解题分析】由定义可得,结合指数函数性质即可求出.【题目详解】由定义可得,当时,,则,当时,,则,综上,的值域是.故选:C.5、B【解题分析】直接由根式化为分数指数幂即可【题目详解】解:故选:B【题目点拨】本题考查了根式与分数指数幂的互化,属基础题.6、A【解题分析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【题目详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A7、C【解题分析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【题目详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.8、A【解题分析】因为直线即,故两条平行直线和的距离故选A9、C【解题分析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【题目详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【题目点拨】本题考查系统抽样,等间距抽取,属于简单题.10、C【解题分析】由在区间是单调减函数可知,,又,故选.考点:1.指数函数的性质;2.函数值比较大小.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【题目详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【题目点拨】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键12、【解题分析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【题目详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【题目点拨】本题考查了空间中点的坐标与应用问题,是基础题13、【解题分析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.14、①-2②.【解题分析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【题目详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;15、【解题分析】原式考点:三角函数化简与求值16、2【解题分析】由函数的解析式可知,∴考点:分段函数求函数值点评:对于分段函数,求函数的关键是要代入到对应的函数解析式中进行求值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或;(3)2【解题分析】(1)根据直线是线段的垂直平分线的方程,求出线段中点坐标和直线的斜率,即可解直线的方程;(2)作图,利用圆的几何性质即可;(3)用面积公式可以推出点Q到直线AB的距离,从而判断出Q的个数.【题目详解】由题意作图如下:(1)∵,的中点坐标为∴直线的方程为:即;(2)设圆心,则由在上得……①又直径为,∴∴……②①代入②消去得,解得或,当时,当时∴圆心或,∴圆的方程为:或;(3)∵∴当面积为8时,点到直线的距离为又圆心到直线的距离为,圆的半径,且∴圆上共有两个点,使的面积为8;故答案为:,或,2.18、(1)增区间为,减区间为(2)对称中心的坐标为;对称轴方程为【解题分析】(1)将函数转化为,利用正弦函数的单调性求解;(2)利用正弦函数的对称性求解;【小问1详解】解:由.令,解得,令,解得,故函数的增区间为,减区间为;【小问2详解】令,解得,可得函数图象的对称中心的坐标为,令,解得,可得函数图象的对称轴方程为19、(1)0;(2)证明见解析.【解题分析】(1)由给定条件确定出,值的正负及大小,再利用二倍角公式化简计算即得;(2)由给定角求出,利用和角公式变形,再展开所证等式的左边代入计算即得.【题目详解】(1)因,则,则原式;(2)因,则,即,亦即,则,所以原等式成立.20、(1)(2)【解题分析】(1)根据诱导公式化简整理即可得答案;(2)根据二倍角公式和同角三角函数关系化简即可得答案.【小问1详解】解:【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论