版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省武威市第一中学2024届高一上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm32.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.3.已知函数,则“”是“函数在区间上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.85.不等式的解集为,则函数的图像大致为()A. B.C. D.6.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.7.设集合则().A. B.C. D.8.某圆的一条弦长等于半径,则这条弦所对的圆心角为A. B.C. D.19.函数的单调递增区间是()A. B.C. D.10.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a2二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,已知圆有且仅有三个点到直线l:的距离为1,则实数c的取值集合是______12.已知函数,若是的最大值,则实数t的取值范围是______13.已知函数,且,则a的取值范围为________f(x)的最大值与最小值和为________.14.已知,且,则的最小值为__________.15.已知函数,则=____________16.设函数,若互不相等的实数、、满足,则的取值范围是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设非空集合P是一元一次方程的解集.若,,满足,,求的值.18.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.19.已知全集,,.(1)求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.20.已知函数是定义在上的奇函数,且.(1)确定函数的解析式,判断并证明函数在上的单调性;(2)若存在实数,使得不等式成立,求正实数的取值范围.21.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【题目详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【题目点拨】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.2、B【解题分析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【题目详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.3、A【解题分析】先由在区间上单调递增,求出的取值范围,再根据充分条件,必要条件的定义即可判断.【题目详解】解:的对称轴为:,若在上单调递增,则,即,在区间上单调递增,反之,在区间上单调递增,,故“”是“函数在区间上单调递增”的充分不必要条件.故选:A.4、B【解题分析】利用零点存在性定理和精确度要求即可得解.【题目详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B5、C【解题分析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【题目详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C6、D【解题分析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.7、D【解题分析】利用求集合交集的方法求解.【题目详解】因为所以.故选:D.【题目点拨】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.8、C【解题分析】直接利用已知条件,转化求解弦所对的圆心角即可.【题目详解】圆的一条弦长等于半径,故由此弦和两条半径构成的三角形是等边三角形,所以弦所对的圆心角为.故选C.【题目点拨】本题考查扇形圆心角的求法,是基本知识的考查.9、B【解题分析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【题目详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键10、B【解题分析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为圆心到直线的距离为,所以由题意得考点:点到直线距离12、【解题分析】先求出时最大值为,再由是的最大值,解出t的范围.【题目详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:13、①.②.2【解题分析】由结合,即可求出a的取值范围;由,知关于点成中心对称,即可求出f(x)的最大值与最小值和.【题目详解】由,,所以,则故a的取值范围为.第(2)空:由,知关于点成中心对称图形,所以.故答案为:;.14、【解题分析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【题目详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.15、【解题分析】由函数解析式,先求得,再求得代入即得解.【题目详解】函数,则==,故答案为.【题目点拨】本题考查函数值的求法,属于基础题.16、【解题分析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【题目详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【题目点拨】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、答案见解析【解题分析】由题意可得,写出P的所有可能,结合一元二次方程的根与系数的关系求解即可.【题目详解】由于一元二次方程的解集非空,且,,所以,即满足题意.当时,由韦达定理得,,此时:当时,由韦达定理得,,此时;当时,由韦达定理得,,此时.18、(1)(2)【解题分析】(1)由图象得到,且,得到,结合五点法,列出方程求得,即可得到函数的解析式;(2)由题意,求得,,结合利用两角和的正弦公式,即可求解.【小问1详解】解:由图象可得,函数的最大值为,可得,又由,可得,所以,所以,又由图可知是五点作图法中的第三个点,因为,可得,因为,所以,所以.【小问2详解】解:因为,则,又因为,所以,由,则,有,所以.19、(1);(2);(3).【解题分析】(1)因为全集,,所以(2)因为,且.所以实数的取值范围是(3)因为,且,所以,所以可得20、(1),函数在上单调递减,证明见解析.(2)【解题分析】(1)根据,得到函数解析式,设,计算,证明函数的单调性.(2)根据函数的奇偶性和单调性得到,设,求函数的最小值得到答案.【小问1详解】函数是定义在上的奇函数,则,,解得,,故.在上单调递减,证明如下:设,则,,,,故,即.故函数在上单调递减.【小问2详解】,即,,,故,即,设,,,,故,又,故.21、(1)证明见解析;(2).【解题分析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM⊥平面BEF,即为所求三棱锥的高,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁设备合同详细条款2篇
- 2024版给排水供暖设备安装与调试服务合同3篇
- 2024年度快递柜清障与维护服务合同3篇
- 2024版海洋工程设备采购与安装服务合同范本3篇
- 2024年度美容美发店消防安全管理合同6篇
- 2024年度智能安防产品研发与市场推广合同3篇
- 2024版智能穿戴产品生产销售合同2篇
- 2024版地产经纪服务佣金结算合同范本10篇
- 2024年EPS装饰线条工程智能化控制系统集成合同2篇
- 2024版版权共享合同书3篇
- 2024年度餐饮店合伙人退出机制与财产分割协议2篇
- 《招商银行转型》课件
- 灵新煤矿职业病危害告知制度范文(2篇)
- 2024年护校队安全工作制度(3篇)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 大学英语-高职版(湖南环境生物职业技术学院)知到智慧树答案
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 糖尿病酮酸症中毒
- 2025北京语言大学新编长聘人员招聘21人笔试模拟试题及答案解析
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册
- 东北师大附属中学2025届高一物理第一学期期末质量检测试题含解析
评论
0/150
提交评论