![贵州省纳雍县第五中学2024届高一上数学期末调研试题含解析_第1页](http://file4.renrendoc.com/view/c70bacb3529eef4aa048a04c4fbfec87/c70bacb3529eef4aa048a04c4fbfec871.gif)
![贵州省纳雍县第五中学2024届高一上数学期末调研试题含解析_第2页](http://file4.renrendoc.com/view/c70bacb3529eef4aa048a04c4fbfec87/c70bacb3529eef4aa048a04c4fbfec872.gif)
![贵州省纳雍县第五中学2024届高一上数学期末调研试题含解析_第3页](http://file4.renrendoc.com/view/c70bacb3529eef4aa048a04c4fbfec87/c70bacb3529eef4aa048a04c4fbfec873.gif)
![贵州省纳雍县第五中学2024届高一上数学期末调研试题含解析_第4页](http://file4.renrendoc.com/view/c70bacb3529eef4aa048a04c4fbfec87/c70bacb3529eef4aa048a04c4fbfec874.gif)
![贵州省纳雍县第五中学2024届高一上数学期末调研试题含解析_第5页](http://file4.renrendoc.com/view/c70bacb3529eef4aa048a04c4fbfec87/c70bacb3529eef4aa048a04c4fbfec875.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省纳雍县第五中学2024届高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,且,下列选项中一定正确的是()A. B.C. D.2.函数的图象如图所示,则函数y的表达式是()A. B.C. D.3.已知直线,,若,则实数的值为A.8 B.2C. D.-24.已知函数的定义域为,则函数的定义域为()A. B.C. D.5.下列函数中,能用二分法求零点的是()A. B.C. D.6.浙江省在先行探索高质量发展建设共同富裕示范区,统计数据表明,2021年前三季度全省生产总值同比增长10.6%,两年平均增长6.4%,倘若以8%的年平均增长率来计算,经过多少年可实现全省生产总值翻一番(,)()A.7年 B.8年C.9年 D.10年7.中,设,,为中点,则A. B.C. D.8.已知,,则的大小关系是A. B.C. D.9.函数的一个零点是()A. B.C. D.10.已知为第二象限角,则的值是()A.3 B.C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,若,则的形状一定是___________三角形.12.已知指数函数的解析式为,则函数的零点为_________13.不等式x2-5x+6≤0的解集为______.14.已知幂函数的图象过点,则______.15.若函数部分图象如图所示,则此函数的解析式为______.16.函数单调递增区间为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)若,求实数的值;(2)若,求实数的取值范围.18.某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)项目类别年固定成本每件产品成本每件产品销售价每年最多可生产的件数A产品20m10200B产品40818120其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[6,9],另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划19.已知函数.(1)求的单调区间;(2)若,且,求值.20.已知不等式的解集为或.(1)求b和c的值;(2)求不等式的解集.21.已知函数且若,求的值;若,求证:是偶函数
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】举出反例即可判断AC,根据不等式的性质即可判断B,利用作差法即可判断D.【题目详解】解:对于A,当时,不成立,故A错误;对于B,若,则,故B错误;对于C,当时,,故C错误;对于D,,因为,所以,,所以,即,故D正确.故选:D.2、A【解题分析】由函数的最大、最小值,算出和,根据函数图像算出周期,利用周期公式算出.再由当时函数有最大值,建立关于的等式解出,即可得到函数的表达式.【题目详解】函数的最大值为,最小值为,,,又函数的周期,,得.可得函数的表达式为,当时,函数有最大值,,得,可得,结合,取得,函数的表达式是.故选:.【题目点拨】本题给出正弦型三角函数的图象,求它的解析式.着重考查了三角函数的周期公式、三角函数的图象的变换与解析式的求法等知识属于中档题.3、A【解题分析】利用两条直线平行的充要条件求解【题目详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【题目点拨】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用4、B【解题分析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【题目详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B5、D【解题分析】利用零点判定定理以及函数的图象,判断选项即可【题目详解】由题意以及零点判定定理可知:只有选项D能够应用二分法求解函数的零点,故选D【题目点拨】本题考查了零点判定定理的应用和二分法求解函数的零点,是基本知识的考查6、D【解题分析】由题意,可得,,两边取常用对数,根据参数数据即可求解.【题目详解】解:设经过年可实现全省生产总值翻一番,全省生产总值原来为,由题意可得,即,两边取常用对数可得,所以,因为,所以,所以经过10年可实现全省生产总值翻一番.故选:D.7、C【解题分析】分析:直接利用向量的三角形法则求.详解:由题得,故答案为C.点睛:(1)本题主要考查向量的加法和减法法则,意在考查学生对这些基础知识的掌握水平和转化能力.(2)向量的加法法则:,向量的减法法则:.8、D【解题分析】因为,故,同理,但,故,又,故即,综上,选D点睛:对于对数,如果或,那么;如果或,那么9、B【解题分析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【题目详解】解:令函数,则,则,当时,.故选:B10、C【解题分析】由为第二象限角,可得,再结合,化简即可.【题目详解】由题意,,因为为第二象限角,所以,所以.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、等腰【解题分析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【题目详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.12、1【解题分析】解方程可得【题目详解】由得,故答案为:113、【解题分析】根据二次函数的特点即可求解.【题目详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.14、【解题分析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【题目详解】为幂函数,可设,,解得:,,.故答案为:.【题目点拨】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.15、.【解题分析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【题目详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【题目点拨】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.16、【解题分析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【题目详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】(1)求出集合,再根据列方程求解即可;(2)根据分,讨论求解.【小问1详解】由已知得,解得;【小问2详解】当时,,得当时,或,解得或,综合得或.18、(1),且;,且;(2)答案见解析.【解题分析】(1)设年销售量为件,由题意可得,,注意根据实际情况确定定义域.(2)分别计算两种方案的最值可得,讨论的符号,研究不同的方案所投资的产品及最大利润.【小问1详解】设年销售量为件,按利润的计算公式生产、两产品的年利润、分别为:,且;,且.【小问2详解】因为,则,故为增函数,又且,所以时,生产产品有最大利润:(万美元).又,且,所以时,生产产品有最大利润为460(万美元),综上,,令,得;令,得;令,得.由上知:当时,投资生产产品200件获得最大年利润;当时,投资生产产品100件获得最大年利润;当时,投资生产产品和产品获得的最大利润一样.19、(1)的单调递增区间为,单调递减区间(2)【解题分析】(1)化简解析式,根据三角函数单调区间的求法,求得的单调区间.(2)求得、,结合两角差的正弦公式求得.【小问1详解】.由,得,的单调递增区间为,同理可得的单调递减区间.【小问2详解】,.,...20、(1);;(2)【解题分析】(1)利用二次不等式的解集与相应的二次方程的根的关系,判断出1,2是相应方程的两个根,利用韦达定理求出,的值(2)将,的值代入不等式,将不等式因式分解,求出二次不等式的解集【题目详解】解:(1)不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版历史七年级下册第10课 《蒙古族的兴起与元朝的建立》 听课评课记录7
- 北师大版历史八年级上册第10课《新文化运动》听课评课记录
- 猪场购销合同(2篇)
- 生产承包合同(2篇)
- 仁爱版八年级地理上册3.2《土地资源》听课评课记录
- 八年级道德与法治下册第四单元崇尚法治精神第七课尊重自由平等第1框自由平等的真谛听课评课记录(新人教版)
- 苏科版数学七年级下册10.2.1《二元一次方程组》听评课记录
- 冀教版数学七年级下册《多项式乘多项式》听评课记录2
- 湘教版数学七年级上册2.3《代数式的值》听评课记录
- 五年级数学下册听评课记录《3.1 分数乘法(一)(4)》北师大版
- 固体废弃物检查记录
- 工程设计费取费标准
- GB/T 5465.1-2009电气设备用图形符号第1部分:概述与分类
- 2023年辽宁铁道职业技术学院高职单招(数学)试题库含答案解析
- CAPP教学讲解课件
- 自然环境的服务功能课件 高中地理人教版(2019)选择性必修3
- 小耳畸形课件
- 新人教版初中初三中考数学总复习课件
- 机械制造有限公司组织架构图模板
- 8.3 摩擦力 同步练习-2021-2022学年人教版物理八年级下册(Word版含答案)
- 生理学教学大纲
评论
0/150
提交评论