版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题十二概率统计真题卷题号考点考向2023新课标1卷9样本的数字特征样本的平均值、中位数、标准差、极差21独立事件的概率、互斥事件的概率、离散型随机变量的分布列与数字特征求独立事件的概率、互斥事件的概率、求离散型随机变量的期望(概率与数列的综合应用)2023新课标2卷3随机抽样分层抽样12独立事件的概率求独立事件的概率19频率分布直方图、概率与函数的综合应用利用频率分布直方图求概率、概率与函数的综合应用2022新高考1卷5古典概型古典概型及其计算20独立性检验、条件概率独立性检验、条件概率的计算、新定义问题2022新高考2卷13正态分布正态分布求概率19概率统计的综合应用频率分布直方图、求对立事件的概率、求条件概率2021新高考1卷8独立事件独立事件的判断9样本的数字特征求样本的平均数、中位数、标准差、极差18离散型随机变量的分布列、期望求离散型随机变量的分布列及期望并作出决策2021新高考2卷6正态分布求正态分布的概率9样本的数字特征研究样本数据的离散程度与集中趋势21离散型随机变量的期望求离散型随机变量的期望、及期望的范围问题及期望的实际意义2020新高考1卷6事件间的关系事件间的关系及运算19古典概型、独立性检验古典概型的概率计算、独立性检验2020新高考2卷9统计图表折线图中的数据分析19古典概型、独立性检验古典概型的概率计算、独立性检验【2023年真题】1.(2023·新课标=2\*ROMANII卷第3题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有A.SKIPIF1<0种 B.SKIPIF1<0种 C.SKIPIF1<0种 D.SKIPIF1<0种【答案】D
【解析】【分析】本题考查比例分配的分层随机抽样方法的应用,考查组合数公式的应用,为基础题.【解答】解:结合题意初中部和高中部所占的比例为SKIPIF1<0,抽取初中部40人,高中部20人,故不同的抽样结果为SKIPIF1<0
种,故选SKIPIF1<0
2.(2023·新课标=1\*ROMANI卷第9题)(多选)一组样本数据SKIPIF1<0,其中SKIPIF1<0是最小值,SKIPIF1<0是最大值,则(
)A.SKIPIF1<0的平均数等于SKIPIF1<0的平均数
B.SKIPIF1<0的中位数等于SKIPIF1<0的中位数
C.SKIPIF1<0的标准差不小于SKIPIF1<0的标准差
D.SKIPIF1<0的极差不大于SKIPIF1<0的极差【答案】BD
【解析】【分析】本题考查样本的数字特征,考查数学运算、数据分析能力,属于基础题.A,C选项,通过取一组特殊值,即可判断;B选项,设SKIPIF1<0,即可明确两组数据的中位数;D选项,设SKIPIF1<0中最小值为SKIPIF1<0,最大值为SKIPIF1<0,即可得到SKIPIF1<0【解答】解:对于A:不妨令SKIPIF1<0,则故A错误;对于SKIPIF1<0不妨令SKIPIF1<0,则SKIPIF1<0的中位数是SKIPIF1<0;因为SKIPIF1<0是最小值,SKIPIF1<0是最大值,故SKIPIF1<0的中位数依然是SKIPIF1<0;故B正确;对于C:不妨令SKIPIF1<0则SKIPIF1<0的标准差SKIPIF1<0,SKIPIF1<0的标准差,故C错误;对于D:设SKIPIF1<0中最小值为SKIPIF1<0,最大值为SKIPIF1<0,则SKIPIF1<0,则SKIPIF1<0,故D正确;故选SKIPIF1<03.(2023·新课标II卷第12题)(多选)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为SKIPIF1<0,收到0的概率为SKIPIF1<0发送1时,收到0的概率为SKIPIF1<0,收到1的概率为SKIPIF1<0考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次;三次传输是指每个信号重复发送3次SKIPIF1<0收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码SKIPIF1<0三次传输时,收到的信号中出现次数多的即为译码SKIPIF1<0例如,若依次收到1,0,1,则译码为SKIPIF1<0A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为SKIPIF1<0
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为SKIPIF1<0
C.采用三次传输方案,若发送1,则译码为1的概率为SKIPIF1<0
D.当SKIPIF1<0时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【答案】ABD
【解析】【分析】本题考查相互独立事件的概率乘法原理,属于综合题.根据题设的信号传递的概率值利用相互独立事件的概率乘法原理分别计算每种情况的概率即可求解.【解答】解:SKIPIF1<0根据相互独立事件的概率乘法原理知:采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为SKIPIF1<0,故A对.B.根据相互独立事件的概率乘法原理知三次传输方案,若发送1,则依次收到1,0,1的概率为为SKIPIF1<0,故B对.C.采用三次传输方案,若发送1,译码为SKIPIF1<0则收到1的情况有2种,SKIPIF1<0个SKIPIF1<0个SKIPIF1<0SKIPIF1<0个SKIPIF1<0故概率为SKIPIF1<0,故C错.D.三次传输方案译码为0的概率:SKIPIF1<0单次传输方案译码为0的概率:SKIPIF1<0,作差SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故D对.故选:SKIPIF1<04.(2023·新课标=1\*ROMANI卷第21题)甲乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为SKIPIF1<0,乙每次投篮的命中率均为SKIPIF1<0,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为SKIPIF1<0SKIPIF1<0求第2次投篮的人是乙的概率.SKIPIF1<0求第i次投篮的人是甲的概率.SKIPIF1<0已知:若随机变量SKIPIF1<0服从两点分布,且SKIPIF1<0,SKIPIF1<0,2,SKIPIF1<0,n,则SKIPIF1<0记前n次SKIPIF1<0即从第1次到第n次投篮SKIPIF1<0中甲投篮的次数为Y,求
SKIPIF1<0【答案】解:SKIPIF1<0第二次是乙投篮的概率为SKIPIF1<0SKIPIF1<0第i次是乙投篮的概率为SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0则SKIPIF1<0故SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0SKIPIF1<0
当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0,综上,SKIPIF1<0,SKIPIF1<0
【解析】本题主要考查了全概率公式,构造等比数列和等比数列前n项和公式以及求两点分布的期望,属于较难题.SKIPIF1<0根据题意直接运用全概率公式即可得出结论;SKIPIF1<0由题意可得甲第i次投篮的概率为SKIPIF1<0则第i次是乙投篮的概率为SKIPIF1<0,再根据题意列出关于SKIPIF1<0的递推关系,运用配凑法可得出SKIPIF1<0,通过化简即可求出SKIPIF1<0
SKIPIF1<0由随机变量SKIPIF1<0服从两点分布,则SKIPIF1<0根据公式即可求出SKIPIF1<05.(2023·新课标II卷第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为SKIPIF1<0;误诊率是将未患病者判定为阳性的概率,记为SKIPIF1<0假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.SKIPIF1<0当漏诊率SKIPIF1<0时,求临界值c和误诊率SKIPIF1<0;SKIPIF1<0设函数SKIPIF1<0当SKIPIF1<0时,求SKIPIF1<0的解析式,并求SKIPIF1<0在区间SKIPIF1<0的最小值.【答案】解:SKIPIF1<0因为SKIPIF1<0依据“患病者”的频率分布直方图得SKIPIF1<0,依据“未患病者”的频率分布直方图得SKIPIF1<0SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0故所以SKIPIF1<0在区间SKIPIF1<0的最小值为:SKIPIF1<0【解析】本题SKIPIF1<0问考察了频率分布直方图频率的简单计算,SKIPIF1<0问需结合分段函数解决概率统计的问题.SKIPIF1<0依据题意理解漏诊率即“患病者”的频率分布直方图中小于c的各小矩形部分面积,观察到SKIPIF1<0,故SKIPIF1<0,即可求SKIPIF1<0同理误诊率SKIPIF1<0即“未患病者”的频率分布直方图中大于c的各小矩形部分面积,即可求SKIPIF1<0SKIPIF1<0要求SKIPIF1<0,观察到在区间SKIPIF1<0和区间SKIPIF1<0小矩形高度不同,故分段考虑分别列式.得SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0时,SKIPIF1<0再利用函数的单调性得到SKIPIF1<0在区间SKIPIF1<0的最小值.【2022年真题】6.(2022·新高考I卷第5题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D
【解析】【分析】本题考查了古典概型及其计算,属于基础题.
利用列举法求出总的取法与满足条件的取法,再由古典概型的概率计算公式计算即可.【解答】解:由题可知,总的取法有
SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,共SKIPIF1<0种,
互质的数对情况有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共14个,
所以两个数互质的概率为SKIPIF1<07.(2022·新高考II卷第13题)随机变量X服从正态分布SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0__________.【答案】SKIPIF1<0
【解析】【分析】本题考查了正态分布的意义,正态曲线的对称性及其应用.【解答】解:由题意可知,SKIPIF1<0,故SKIPIF1<08.(2022·新高考I卷第20题)一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯SKIPIF1<0卫生习惯分为良好和不够良好两类SKIPIF1<0的关系,在已患该疾病的病例中随机调查了100例SKIPIF1<0称为病例组SKIPIF1<0,同时在未患该疾病的人群中随机调查了100人SKIPIF1<0称为对照组SKIPIF1<0,得到如下数据:不够良好良好病例组4060对照组1090SKIPIF1<0能否有SKIPIF1<0的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
SKIPIF1<0从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”,SKIPIF1<0与SKIPIF1<0的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为SKIPIF1<0
SKIPIF1<0证明:SKIPIF1<0
SKIPIF1<0利用该调查数据,给出SKIPIF1<0,SKIPIF1<0的估计值,并利用SKIPIF1<0的结果给出R的估计值.
附:SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0kSKIPIF1<0SKIPIF1<0SKIPIF1<0【答案】解:SKIPIF1<0得到SKIPIF1<0列联表如下:不够良好良好总计病例组4060100对照组1090100总计50150200SKIPIF1<0,
SKIPIF1<0有SKIPIF1<0的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异;
SKIPIF1<0证明:SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0
又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,
SKIPIF1<0,
SKIPIF1<0
SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,
SKIPIF1<0,
SKIPIF1<0,
SKIPIF1<0,
即SKIPIF1<0,SKIPIF1<0,R的估计值为SKIPIF1<0
【解析】本题考查了独立性检验和条件概率的计算,属中档题.
SKIPIF1<0列出SKIPIF1<0列联表,计算SKIPIF1<0求解即可;
SKIPIF1<0利用条件概率的计算公式即可证明;
SKIPIF1<0将数据代入公式即可求解.9.(2022·新高考II卷第19题)在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样
本数据频率分布直方图.
SKIPIF1<0估计该地区这种疾病患者的平均年龄SKIPIF1<0同一组数据用该区间的中点值作代表SKIPIF1<0
SKIPIF1<0估计该地区以为这种疾病患者年龄位于区间SKIPIF1<0的概率;
SKIPIF1<0已知该地区这种疾病患者的患病率为SKIPIF1<0,该地区年龄位于区间SKIPIF1<0的人口数占该地区总人口数的SKIPIF1<0,从该地区选出1人,若此人的年龄位于区间SKIPIF1<0,求此人患这种疾病的概率SKIPIF1<0精确到SKIPIF1<0【答案】解:SKIPIF1<0平均年龄SKIPIF1<0SKIPIF1<0岁SKIPIF1<0
SKIPIF1<0设SKIPIF1<0一人患这种疾病的年龄在区间SKIPIF1<0,则
SKIPIF1<0
SKIPIF1<0设SKIPIF1<0任选一人年龄位于区间SKIPIF1<0任选一人患这种疾病SKIPIF1<0,
则由条件概率公式,得SKIPIF1<0
【解析】本题考查了平均数,概率的求法,考查频率分布直方图、条件概率等知识.【2021年真题】10.(2021·新高考I卷第8题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球、甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则(
)A.甲与丙相互独立 B.甲与丁相互独立 C.乙与丙相互独立 D.丙与丁相互独立【答案】B
【解析】【分析】本题考查相互独立事件的概念,属于中档题.
若SKIPIF1<0,则A与B相互独立,即可得答案.【解答】解:由题意可知,两次取出的球的数字之和为8的所有可能为:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,两次取出的球的数字之和为7的所有可能为:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得甲、乙、丙、丁事件发生的概率为:SKIPIF1<0甲SKIPIF1<0,SKIPIF1<0乙SKIPIF1<0,SKIPIF1<0丙SKIPIF1<0,SKIPIF1<0丁SKIPIF1<0,又SKIPIF1<0甲丙SKIPIF1<0,SKIPIF1<0甲丁SKIPIF1<0,SKIPIF1<0乙丙SKIPIF1<0,SKIPIF1<0丙丁SKIPIF1<0所以SKIPIF1<0甲丁SKIPIF1<0甲SKIPIF1<0丁SKIPIF1<0,故选:B.11.(2021·新高考II卷第6题)某物理量的测量结果服从正态分布,下列结论中不正确的是(
)A.SKIPIF1<0越小,该物理量在一次测量中在SKIPIF1<0的概率越大
B.SKIPIF1<0越小,该物理量在一次测量中大于10的概率为SKIPIF1<0
C.SKIPIF1<0越小,该物理量在一次测量中小于SKIPIF1<0与大于SKIPIF1<0的概率相等
D.SKIPIF1<0越小,该物理量在一次测量中落在SKIPIF1<0与落在SKIPIF1<0的概率相等【答案】D
【解析】【分析】本题考查了正态分布的相关知识,属于中档题.
由正态分布密度曲线的特征逐项判断即可得解.【解答】解:对于A,SKIPIF1<0为数据的方差,所以SKIPIF1<0越小,数据在SKIPIF1<0附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为SKIPIF1<0,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于SKIPIF1<0的概率与小于SKIPIF1<0的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选SKIPIF1<012.(2021·新高考I卷第9题)(多选)有一组样本数据SKIPIF1<0,由这组数据得到新样本数据SKIPIF1<0,其中SKIPIF1<0,c为非零常数,则A.两组样本数据的样本平均数相同 B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同 D.两组样本数据的样本极差相同【答案】CD
【解析】【分析】本题考查集中趋势参数平均数、中位数及离散程度参数标准差、极差.利用平均数、中位数、标准差、极差定义即可求解.【解答】解:假设SKIPIF1<0,对于SKIPIF1<0由样本平均数定义SKIPIF1<0,A错误;
对于SKIPIF1<0由中位数定义,两组样本数据样本中位数不相同,B错误;
对于SKIPIF1<0由样本标准差定义SKIPIF1<0
,可得两组样本数据样本标准差相同,C正确;
对于SKIPIF1<0由样本极差定义,第一组数据样本极差SKIPIF1<0,第二组样本数据极差SKIPIF1<0,D正确;故答案为:SKIPIF1<013.(2021·新高考II卷第9题)(多选)下列统计量中,能度量样本SKIPIF1<0的离散程度的是(
)A.样本SKIPIF1<0的标准差 B.样本SKIPIF1<0的中位数
C.样本SKIPIF1<0的极差 D.样本SKIPIF1<0的平均数【答案】AC
【解析】【分析】本题考查了离散程度与集中趋势的相关知识,属于基础题.
判断所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【解答】解:由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选SKIPIF1<014.(2021·新高考I卷第18题)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分。
已知小明能正确回答A类问题的概率为SKIPIF1<0,能正确回答B类问题的概率为SKIPIF1<0,且能正确回答问题的概率与回答次序无关.
SKIPIF1<0若小明先回答A类问题,记X为小明的累计得分,求X的分布列;
SKIPIF1<0为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】解:SKIPIF1<0根据条件可知:若小明先回答A类问题,则小明的累计得分X的可能值为0,20,100,SKIPIF1<0小明能正确回答A类问题的概率为SKIPIF1<0,能正确回答B类问题的概率为SKIPIF1<0,SKIPIF1<0;SKIPIF1<0;SKIPIF1<0,则X的分布列为X020100PSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0若小明先回答B类问题,则小明的累计得分Y的可能值为0,80,100,同理可求SKIPIF1<0;SKIPIF1<0;SKIPIF1<0则此时累计得分的期望值SKIPIF1<0又由SKIPIF1<0可求得,当小明先回答A类问题时,累计得分的期望值SKIPIF1<0,
SKIPIF1<0,故为使累计得分的期望最大,小明应选择先回答B类问题.【解析】本题主要考查离散型随机变量的分布列和数学期望,相互独立事件、对立事件的概率和求解办法,考查用概率知识解决实际问题的能力,属于中档题.
SKIPIF1<0根据题意,列举小明先回答A类问题累计得分X的可能值,由于每题答题结果相互独立,根据相互独立事件和互斥事件的概率公式得到X取不同值的概率.
SKIPIF1<0同SKIPIF1<0的方法可求出小明先回答B类问题,小明的累计得分Y取的不同值以及对应概率值,再根据期望公式分别求出小明先回答A类问题和小明先回答B类问题的期望值,即可判断出小明应先回答哪类问题.15.(2021·新高考II卷第21题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,SKIPIF1<0SKIPIF1<0已知SKIPIF1<0,求SKIPIF1<0;SKIPIF1<0设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:SKIPIF1<0的一个最小正实根,求证:当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0;SKIPIF1<0根据你的理解说明SKIPIF1<0问结论的实际含义.【答案】SKIPIF1<0SKIPIF1<0设,因为SKIPIF1<0,故,若,则SKIPIF1<0,故SKIPIF1<0,因为,,故有两个不同零点SKIPIF1<0,且SKIPIF1<0,且时,;时,;故在,上为增函数,在上为减函数,若SKIPIF1<0,因为在为增函数且,而当时,因为在上为减函数,故,故1为SKIPIF1<0的一个最小正实根,若SKIPIF1<0,因为且在上为减函数,故1为SKIPIF1<0的一个最小正实根,综上,若,则SKIPIF1<0若,则SKIPIF1<0,故SKIPIF1<0此时,,故有两个不同零点SKIPIF1<0,且SKIPIF1<0,且时,;时,;故在,上为增函数,在上为减函数,而,故,又,故在存在一个零点p,且SKIPIF1<0所以p为SKIPIF1<0的一个最小正实根,此时SKIPIF1<0,故当时,SKIPIF1<0SKIPIF1<0意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代后必然临近灭绝,若繁殖后代的平均数超过1,则若干代后还有继续繁殖的可能.【解析】本题是对离散型随机变量和导数的综合考查,属于拔高题.
SKIPIF1<0利用公式计算可得SKIPIF1<0SKIPIF1<0利用导数讨论函数的单调性,结合及极值点的范围可得的最小正零点.SKIPIF1<0利用期望的意义及根的范围可得相应的理解说明.【2020年真题】16.(2020·新高考I卷第5题、II卷第5题)某中学的学生积极参加体育锻炼,其中有SKIPIF1<0的学生喜欢足球或游泳,SKIPIF1<0的学生喜欢足球,SKIPIF1<0的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C
【解析】【分析】本题考查韦恩图的应用,熟练掌握韦恩图中各集合的关系是解题关键.
根据韦恩图中集合的关系运算即可.【解答】解:由题意可得如下所示韦恩图:
所求比例为:SKIPIF1<0,
故答案为:SKIPIF1<0故答案为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 多层陶瓷片式电感市场现状及未来发展趋势(2024版)
- 融文:2024撰写现代化PR报告的专业指南
- 荣泰煤矿6-2中煤大巷煤柱回收开采方案
- 水源地合理开采及恢复机制研究
- 广州-PEP-2024年11版小学4年级上册英语第6单元测验试卷
- Python程序设计实践-教学大纲、授课计划
- 2024年电能仪表项目资金需求报告代可行性研究报告
- 预制菜分类原则(征求意见稿)编制说明
- 珠宝销售个人工作计划
- 新娘结婚致辞
- DBJ33_T 1268-2022 工程建设工法编制标准
- 钢结构焊接施工记录含内容
- 治安保卫重点要害部位审定表
- 压力容器产品质量证明书样表简版
- 小学档案资料目录
- 平方差公式(课堂PPT)
- 振冲碎石桩试桩方案泉港天佑项目2018.3.8
- 超星尔雅学习通《公文写作规范》章节测试含答案
- 11工作审批流程及权限
- 昆虫分类表汇总
- 综合组教研活动记录【精选文档】
评论
0/150
提交评论