版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁市射洪中学2024届高一数学第一学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值为()A. B.C. D.2.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形A.①④ B.①③④C.②③ D.①③3.已知函数的定义域为,则函数的定义域为()A. B.C. D.4.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.5.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则6.设命题,则命题p的否定为()A. B.C. D.7.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立8.如果角的终边经过点,则()A. B.C. D.9.若,,三点共线,则()A. B.C. D.10.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________12.一个几何体的三视图及其尺寸(单位:cm),如右图所示,则该几何体的侧面积为cm13.若,,,则的最小值为____________.14.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;15.经过点且在轴和轴上的截距相等的直线的方程为__________16.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某学校对高一某班的名同学的身高(单位:)进行了一次测量,将得到的数据进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.(1)求直方图中的值,估计全班同学身高的中位数;(2)若采用分层抽样的方法从全班同学中抽取了名身高在内的同学,再从这名同学中任选名去参加跑步比赛,求选出的名同学中恰有名同学身高在内的概率.18.已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.19.(1)化简与求值:lg5+lg2++21n(π-2)0:(2)已知tanα=3.求的值.20.已知α是第二象限角,且tanα=-(1)求sinα,cos(2)求sinα-5π+21.(1)求值:;(2)求值:;(3)已知,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【题目详解】,所以当时,取得最大值,故选:C2、D【解题分析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称.【题目详解】对①,中心对称图形有无数个,①正确对②,函数是偶函数,不关于原点成中心对称.②错误对③,正弦函数关于原点成中心对称图形,③正确.对④,充要条件应该是关于原点成中心对称图形,④错误故选D【题目点拨】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误.3、B【解题分析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【题目详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B4、A【解题分析】根据二次函数的单调区间及增减性,可得到,求解即可.【题目详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A5、D【解题分析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【题目详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【题目点拨】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力6、C【解题分析】由全称命题的否定是特称命题即可得解.【题目详解】根据全称命题的否定是特称命题可知,命题的否定命题为,故选:C7、D【解题分析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立8、D【解题分析】由三角函数的定义可求得的值.【题目详解】由三角函数的定义可得.故选:D.【题目点拨】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.9、A【解题分析】先求出,从而可得关于的方程,故可求的值.【题目详解】因为,,故,因为三点共线,故,故,故选:A.10、A【解题分析】求解出成立的充要条件,再与分析比对即可得解.【题目详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【题目点拨】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用12、80【解题分析】图复原的几何体是正四棱锥,斜高是5cm,底面边长是8cm,侧面积为×4×8×5=80(cm2)考点:三视图求面积.点评:本题考查由三视图求几何体的侧面积13、9【解题分析】“1”的代换法去求的最小值即可.【题目详解】(当且仅当时等号成立)则的最小值为9故答案为:914、15海里/小时【解题分析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【题目详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时15、或【解题分析】根据题意将问题分直线过原点和不过原点两种情况求解,然后结合待定系数法可得到所求的直线方程【题目详解】(1)当直线过原点时,可设直线方程为,∵点在直线上,∴,∴直线方程为,即(2)当直线不过原点时,设直线方程,∵点在直线上,∴,∴,∴直线方程为,即综上可得所求直线方程为或故答案为或【题目点拨】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用16、【解题分析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【题目详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【题目点拨】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),中位数为(2)【解题分析】(1)利用频率分布直方图中所有矩形的面积之和为可求得的值,设中位数为,利用中位数左边的矩形面积之和为列等式可求得的值;(2)分析可知所抽取的名学生,身高在的学生人数为,分别记为、、,身高在的学生人数为,记为,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由图可得,解得.设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,可知,所以,,解得,故估计全班同学身高的中位数为.【小问2详解】解:所抽取的名学生,身高在的学生人数为,身高在的学生人数为,设身高在内的同学分别为、、,身高在内的同学为,则这个试验的样本空间可记为,共包含个样本点,记事件选出的名同学中恰有一名同学身高在内.则事件包含的基本事件有、、,共种,故.18、(1),(2)在区间(0,0.5)上是单调递减的【解题分析】(Ⅰ)∵函数是奇函数,则即∴------------------------2分由得解得∴,.------------------------------------------------------6分(Ⅱ)解法1:由(Ⅰ)知,∴,----------------------------------------8分当时,----------------------------10分∴,即函数在区间上为减函数.------------12分[解法2:设,则==------------------------------10分∵∴,,∴,即∴函数在区间上为减函数.--------------------------12分].19、(1);(2)-2【解题分析】(1)利用根式和对数运算求解;(2)利用诱导公式和商数关系求解.【题目详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保工程师劳动合同聘用协议书
- 生态农业园区建设施工合同
- 广告拍摄墙体壁画施工合同
- 居民区翻新施工合同
- 化妆品租赁田地合同
- 知识产权招投标管理规程
- 美容院加盟合同签订技巧
- 建筑材料写字楼租赁合同模板
- 保健产品批次管理办法
- 建筑声学施工图深化设计协议
- 唐诗宋词人文解读智慧树知到期末考试答案章节答案2024年上海交通大学
- 《电视摄像》电子教案
- 火龙罐综合灸疗法
- 深圳市中小学生流感疫苗接种知情同意书
- 射线、直线和角(张冬梅)
- 数据、模型与决策(运筹学)课后习题和案例答案007
- 道路运输达标车辆核查记录表(货车)
- 德国支持中小企业科技创新的政策资料
- 1到10套文章听力 (1)[教案教学]
- 全公安机关易制爆危险化学品安全监管要点暨检查记录表
- 关于集中式供水单位卫生监督管理情况汇报
评论
0/150
提交评论