2024届广西桂林市、防城港市联合调研数学高一上期末联考模拟试题含解析_第1页
2024届广西桂林市、防城港市联合调研数学高一上期末联考模拟试题含解析_第2页
2024届广西桂林市、防城港市联合调研数学高一上期末联考模拟试题含解析_第3页
2024届广西桂林市、防城港市联合调研数学高一上期末联考模拟试题含解析_第4页
2024届广西桂林市、防城港市联合调研数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西桂林市、防城港市联合调研数学高一上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.2.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.133.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.24.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.5.已知,则的值为()A.-4 B.C. D.46.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,617.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.8.若,则()A. B.-3C. D.39.若,则a,b,c的大小关系是()A. B.C. D.10.不等式的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的定义域为_________;若,则_____12.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.13.边长为3的正方形的四个顶点都在球上,与对角线的夹角为45°,则球的体积为______.14.已知一容器中有两种菌,且在任何时刻两种菌的个数乘积为定值,为了简单起见,科学家用来记录菌个数的资料,其中为菌的个数,现有以下几种说法:①;②若今天值比昨天的值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时(注:)则正确的说法为________.(写出所有正确说法的序号)15.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______16.一个棱长为2cm的正方体的顶点都在球面上,则球的体积为_______cm³.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式:.研究表明:当隧道内的车流密度达到辆/千米时造成堵塞,此时车流速度是千米/小时.(1)若车流速度不小于千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到辆/小时),并指出当车流量最大时的车流密度.18.已知函数(1)若的值域为R,求实数a的取值范围;(2)若,解关于x的不等式.19.设函数.求函数的单调区间,对称轴及对称中心.20.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-1.(1)求f(3)+f(-1);(2)求f(x)的解析式.21.为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费).其中一组套餐变更如下:原方案资费手机月租费手机拨打电话家庭宽带上网费(50M)18元/月0.2元/分钟50元/月新方案资费手机月租费手机拨打电话家庭宽带上网费(50M)58元/月前100分钟免费,超过部分元/分钟(>0.2)免费(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于函数关系式;(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【题目详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【题目点拨】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2、D【解题分析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【题目详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【题目点拨】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.3、B【解题分析】将写成分段函数,画出函数图象数形结合,即可求得结果.【题目详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【题目点拨】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.4、B【解题分析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【题目详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【题目点拨】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.5、A【解题分析】由题,解得.故选A.6、B【解题分析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【题目详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B7、D【解题分析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【题目详解】阴影部分表示的集合为,故选【题目点拨】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题8、B【解题分析】利用同角三角函数关系式中的商关系进行求解即可.【题目详解】由,故选:B9、A【解题分析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【题目详解】解:是增函数,是增函数.,又,【题目点拨】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.10、C【解题分析】将原不等式转化为从而可求出其解集【题目详解】原不等式可化为,即,所以解得故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.;②.3.【解题分析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【题目详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;12、【解题分析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【题目详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【题目点拨】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.13、【解题分析】根据给定条件结合球的截面小圆性质求出球O的半径,再利用球的体积公式计算作答.【题目详解】因边长为3的正方形的四个顶点都在球上,则正方形的外接圆是球O的截面小圆,其半径为,令正方形的外接圆圆心为,由球面的截面小圆性质知是直角三角形,且有,而与对角线的夹角为45°,即是等腰直角三角形,球O半径,所以球体积为.故答案为:【题目点拨】关键点睛:涉及求球的表面积、体积问题,利用球的截面小圆性质是解决问题的关键.14、③【解题分析】对于①通过取特殊值即可排除,对于②③直接带入计算即可.【题目详解】当nA=1时,PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;B菌的个数为nB=5×104,∴,∴.又∵,∴故选③15、【解题分析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【题目详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:16、【解题分析】因为一个正方体的顶点都在球面上,它的棱长为2,所以正方体的外接球的直径就是正方体的对角线的长度:2所以球的半径为:所求球的体积为=故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值约为3250辆/小时,车流密度约为87辆/千米.【解题分析】(1)把代入已知式求得,解不等式可得的范围(2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得【题目详解】解:(1)由题意知当(辆/千米)时,(千米/小时),代入得,解得所以当时,,符合题意;当时,令,解得,所以综上,答:若车流速度不小于40千米/小时,则车流密度的取值范围是.(2)由题意得,当时,为增函数,所以,等号当且仅当成立;当时,即,等号当且仅当,即成立.综上,的最大值约为3250,此时约为87.答:隧道内车流量的最大值约为3250辆/小时,此时车流密度约为87辆/千米.【题目点拨】关键点点睛:本题考查函数模型的应用,对于已经给出函数模型的问题,关键是直接利用函数模型列出方程、不等式或利用函数性质求解18、(1)或.(2)见解析.【解题分析】(1)当时,的值域为,当时,的值域为,如满足题意则,解之即可;(2)当时,,即恒成立,当时,即,分类讨论解不等式即可.试题解析:(1)当时,的值域为当时,的值域为,的值域为,解得或的取值范围是或.(2)当时,,即恒成立,当时,即(ⅰ)当即时,无解:(ⅱ)当即时,;(ⅲ)当即时①当时,②当时,综上(1)当时,解集为(2)当时,解集(3)当时,解集为(4)当时,解集为19、函数增区间为;减区间为;对称轴为;对称中心为【解题分析】根据的单调区间、对称轴及对称中心即可得出所求的.【题目详解】函数增区间为同理函数减区间为令其对称轴为令其对称中心为【题目点拨】本题主要考查的是正弦函数的图像和性质,考查学生对正弦函数图像和性质的理解和应用,同时考查学生的计算能力,是中档题.20、(1)6(2)f(x)=【解题分析】(1)可以直接求,利用为奇函数,求得,所以只需要求出就可以了,再求出;(2)由于已知的解析式,所以只需要求出时的解析式即可,由奇函数的性质求出解析式试题解析:(1)∵f(x)是奇函数,∴f(3)+f(-1)=f(3)-f(1)=23-1-2+1=6.(2)设x<0,则-x>0,∴f(-x)=2-x-1,∵f(x)为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论