河北容城博奥学校2024届高一数学第一学期期末监测试题含解析_第1页
河北容城博奥学校2024届高一数学第一学期期末监测试题含解析_第2页
河北容城博奥学校2024届高一数学第一学期期末监测试题含解析_第3页
河北容城博奥学校2024届高一数学第一学期期末监测试题含解析_第4页
河北容城博奥学校2024届高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北容城博奥学校2024届高一数学第一学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的值域为R,则实数的取值范围是()A. B.C. D.2.圆关于直线对称的圆的方程为A. B.C. D.3.已知集合,且,则的值可能为()A. B.C.0 D.14.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.5.与-2022°终边相同的最小正角是()A.138° B.132°C.58° D.42°6.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.7.已知定义域为R的偶函数在上是减函数,且,则不等式的解集为()A. B.C. D.8.已知点,,,且满足,若点在轴上,则等于A. B.C. D.9.,,,则的大小关系为()A. B.C. D.10.已知幂函数在上单调递减,设,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则___________12.为了得到函数的图象,可以将函数的图象向右平移_________个单位长度而得13.已知幂函数经过点,则______14.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________15.满足的集合的个数是______________16.已知,则____________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?18.空气质量指数是定量描述空气质量状况的指数,空气质量指数的值越高,就代表空气污染越严重,其分级如下表:空气质量指数空气质量类别优良轻度污染中度污染重度污染严重污染现分别从甲、乙两个城市月份监测的空气质量指数的数据中随机抽取天的数据,记录如下:甲乙(1)估计甲城市月份某一天空气质量类别为良的概率;(2)分别从甲、乙两个城市的统计数据中任取一个,求这两个数据对应的空气质量类别都为轻度污染的概率;(3)记甲城市这天空气质量指数的方差为.从甲城市月份空气质量指数的数据中再随机抽取一个记为,若,与原有的天的数据构成新样本的方差记为;若,与原有的天的数据构成新样本的方差记为,试比较、、的大小.(结论不要求证明)19.设函数.(1)求的最小正周期和最大值;(2)求的单调递增区间.20.已知若,求方程的解;若关于x的方程在区间上有两个不相等的实根、:求实数k的取值范围;证明:21.如图,正方体的棱长为1,CB′∩BC′=O,求:(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC垂直.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【题目详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.2、A【解题分析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程3、C【解题分析】化简集合得范围,结合判断四个选项即可【题目详解】集合,四个选项中,只有,故选:C【题目点拨】本题考查元素与集合的关系,属于基础题4、A【解题分析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【题目详解】由得,∴.故选:A.5、A【解题分析】根据任意角的周期性,将-2022°化为,即可确定最小正角.【题目详解】由-2022°,所以与-2022°终边相同的最小正角是138°.故选:A6、C【解题分析】根据长、宽、高的和不超过可直接得到关系式.【题目详解】长、宽、高之和不超过,.故选:.7、A【解题分析】根据偶函数的性质可得在上是增函数,且.由此将不等式转化为来求解得不等式的解集.【题目详解】因为偶函数在上是减函数,所以在上是增函数,由题意知:不等式等价于,即,即或,解得:或.故选:A【题目点拨】本小题主要考查函数的奇偶性以及单调性,考查对数不等式的解法,属于中档题.8、C【解题分析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C9、D【解题分析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【题目详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.10、C【解题分析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【题目详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,不合题意,当时,,此时在上单调递减,所以.因为,又,所以,因为在上单调递减,所以,又因为为偶函数,所以,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】将齐次式弦化切即可求解.【题目详解】解:因为,所以,故答案为:2.12、(答案不唯一);【解题分析】由于,再根据平移求解即可.【题目详解】解:由于,故将函数的图象向右平移个单位长度可得函数图像.故答案为:13、##0.5【解题分析】将点代入函数解得,再计算得到答案.【题目详解】,故,.故答案为:14、①.(-∞,1]②.(-1,1]【解题分析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【题目详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.15、4【解题分析】利用集合的子集个数公式求解即可.【题目详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.16、7【解题分析】将两边平方,化简即可得结果.【题目详解】因为,所以,两边平方可得,所以,故答案为7.【题目点拨】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解题分析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.18、(1);(2);(3)【解题分析】(1)甲城市这天内空气质量类别为良有天,利用频率估计概率的思想可求得结果;(2)列举出所有的基本事件,并利用古典概型的概率公式可求得结果;(3)根据题意可得出、、的大小关系.【题目详解】(1)甲城市这天内空气质量类别为良的有天,则估计甲城市月份某一天空气质量类别为良的概率为;(2)由题意,分别从甲、乙两个城市的统计数据中任取一个,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共个,用表示“这两个数据对应的空气质量类别都为轻度污染”,则事件包含的基本事件有:、、、,共个基本事件,所以,;(3)【题目点拨】方法点睛:求解古典概型概率的问题有如下方法:(1)列举法;(2)列表法;(3)树状图法;(4)排列组合数的应用.19、(1)最小正周期,最大值为;(2).【解题分析】把化简为,(1)直接写出最小正周期和最大值;(2)利用正弦函数的单调性直接求出单调递增区间.【题目详解】(1)的最小正周期;最大值为;(2)要求的单调递增区间,只需,解得:,即的单调递增区间为.20、(1)(2),见解析【解题分析】当时,分类讨论,去掉绝对值,直接进行求解,即可得到答案讨论两个根、的范围,结合一元二次方程根与系数之间的关系进行转化求解【题目详解】当时,,当时,,由,得,得舍或;当时,,由得舍;故当时,方程的解是不妨设,因为,若、,与矛盾,若、,与是单调函数矛盾,则;则…①…②由①,得:,由②,得:;的取值范围是;联立①、②消去k得:,即,即,则,,,即【题目点拨】本题主要考查了函数与方程的应用,根据条件判断根的范围,以及利用一元二次方程与一次方程的性质进行转化是解决本题的关键,着重考查了分析问题和解答问题的能力,试题综合性较强,属于中档试题21、(1)30°(2)(3)见解析【解题分析】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法求AO与A′C′所成角的度数;(2)利用向量法求AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC的法向量垂直.【题目详解】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A(1,0,0),O(),(1,0,1),C′(0,1,1),(,1,),(﹣1,1,0),设AO与A′C′所成角为θ,则cosθ,∴θ=30°,∴AO与A′C′所成角为30°.(2)∵(),面ABCD的法向量为(0,0,1),设A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论