甘肃省庆阳长庆中学2024届数学高一上期末调研模拟试题含解析_第1页
甘肃省庆阳长庆中学2024届数学高一上期末调研模拟试题含解析_第2页
甘肃省庆阳长庆中学2024届数学高一上期末调研模拟试题含解析_第3页
甘肃省庆阳长庆中学2024届数学高一上期末调研模拟试题含解析_第4页
甘肃省庆阳长庆中学2024届数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省庆阳长庆中学2024届数学高一上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,的值域为()A. B.C. D.2.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语3.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.4.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.5.下列区间中,函数单调递增的区间是()A. B.C. D.6.函数的部分图象如图所示,则的值分别是()A. B.C. D.7.已知函数的图像中相邻两条对称轴之间的距离为,当时,函数取到最大值,则A.函数的最小正周期为 B.函数的图像关于对称C.函数的图像关于对称 D.函数在上单调递减8.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系9.方程的解为,若,则A. B.C. D.10.若函数满足,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______12.若函数满足,则______13.已知函数,若,则实数的取值范围是__________.14.已知函数是定义在的奇函数,则实数b的值为_________;若函数,如果对于,,使得,则实数a的取值范围是__________15.已知则_______.16.计算:______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,函数(1)若,判断并证明函数的单调性;(2)若,函数在区间()上的取值范围是(),求的范围18.(1)计算:(2)已知,,,,求的值19.已知数列满足(,且),且,设,,数列满足.(1)求证:数列是等比数列并求出数列的通项公式;(2)求数列的前n项和;(3)对于任意,,恒成立,求实数m的取值范围.20.设函数是定义域为的任意函数.(1)求证:函数是奇函数,是偶函数;(2)如果,试求(1)中的和的表达式.21.已知角的终边经过点,求的值;已知,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】首先由的取值范围求出的取值范围,再根据正切函数的性质计算可得;【题目详解】解:因为,所以因为在上单调递增,所以即故选:A2、B【解题分析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【题目详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.3、B【解题分析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【题目详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.4、B【解题分析】由题可得函数为减函数,根据单调性可求解参数的范围.【题目详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B5、A【解题分析】解不等式,利用赋值法可得出结论.【题目详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【题目点拨】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数6、A【解题分析】根据的图象求得,求得,再根据,求得,求得的值,即可求解.【题目详解】根据函数的图象,可得,可得,所以,又由,可得,即,解得,因为,所以.故选:A.7、D【解题分析】由相邻对称轴之间的距离,得函数的最小正周期,求得,再根据当时,函数取到最大值求得,对函数的性质进行判断,可选出正确选项【题目详解】因为函数的图像中相邻两条对称轴之间的距离为,所以,函数的最小正周期,所以,又因为当时,函数取到最大值,所以,,因为,所以,,函数最小正周期,A错误;函数图像的对称轴方程为,,B错误;函数图像的对称中心为,,C错误;所以选择D【题目点拨】由的图像求函数的解析式时,由函数的最大值和最小值求得,由函数的周期求得,代值进函数解析式可求得的值8、C【解题分析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【题目详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【题目点拨】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.9、C【解题分析】令,∵,.∴函数在区间上有零点∴.选C10、A【解题分析】,所以,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解题分析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.12、【解题分析】根据题意,令,结合指数幂的运算,即可求解.【题目详解】由题意,函数满足,令,可得.故答案为:.13、【解题分析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【题目详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【题目点拨】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.14、①.0②.【解题分析】由,可得,设在的值域为,在上的值域为,根据题意转化为,根据函数的单调性求得函数和的值域,结合集合的运算,列出不等式组,即可求解.【题目详解】由函数是定义在的奇函数,可得,即,经检验,b=0成立,设在值域为,在上的值域为,对于,,使得,等价于,又由为奇函数,可得,当时,,,所以在的值域为,因为在上单调递增,在上单调递减,可得的最小值为,最大值为,所以函数的值域为,则,解得,即实数的取值范围为.故答案为:;.15、【解题分析】因为,所以16、【解题分析】根据幂的运算法则,根式的定义计算【题目详解】故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在上递增,证明见解析.(2)【解题分析】(1)根据函数单调性的定义计算的符号,从而判断出的单调性.(2)对进行分类讨论,结合一元二次方程根的分布来求得的范围.【小问1详解】,当时,的定义域为,在上递增,证明如下:任取,由于,所以,所以在上递增.【小问2详解】由于,所以,,由知,所以.由于,所以或.当时,由(1)可知在上递增.所以,从而①有两个不同的实数根,令,①可化为,其中,所以,,,解得.当时,函数的定义域为,函数在上递减.若,则,于是,这与矛盾,故舍去.所以,则,于是,两式相减并化简得,由于,所以,所以.综上所述,的取值范围是.【题目点拨】函数在区间上单调,则其值域和单调性有关,若在区间上递增,则值域为;若在区间上递减,则值域为.18、(1)8;(2).【解题分析】(1)根据对数的运算法则即可求得;(2)根据同角三角函数的关系式求出和的值,然后利用余弦的和角公式求的值【题目详解】(1);(2)∵,,∴,∵,,∴,∴.19、(1)见解析(2)(3).【解题分析】(1)将式子写为:得证,再通过等比数列公式得到的通项公式.(2)根据(1)得到进而得到数列通项公式,再利用错位相减法得到前n项和.(3)首先判断数列的单调性计算其最大值,转换为二次不等式恒成立,将代入不等式,计算得到答案.【题目详解】(1)因为,所以,,所以是等比数列,其中首项是,公比为,所以,.(2),所以,由(1)知,,又,所以.所以,所以两式相减得.所以.(3),所以当时,,当时,,即,所以当或时,取最大值是.只需,即对于任意恒成立,即所以.【题目点拨】本题考查了等比数列的证明,错位相减法求前N项和,数列的单调性,数列的最大值,二次不等式恒成立问题,综合性强,计算量大,意在考查学生解决问题的能力.20、(1)是奇函数,是偶函数.(2)【解题分析】(1)计算,可得证(2)将f(x)代入(1)中表达式化简即可求得试题解析:(1)∵的定义域为,∴和的定义域都为.∵,∴.∴是奇函数,∵,∴,∴是偶函数.(2)∵,由(1)得,.∵,∴.点睛:抽象函数的奇偶性证明,先看定义域是否关于远点对称,然后根据奇偶函数的等式性质进行计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论