版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市第31中学2024届数学高一上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,,则()A. B.C. D.2.已知直线与直线平行,则的值为A.1 B.-1C.0 D.-1或13.函数y=ax+1﹣1(a>0,a≠1)恒过的定点是()A.(1,﹣1) B.(0,0)C.(0,﹣1) D.(﹣1,0)4.已知函数是上的增函数,则实数的取值范围为()A. B.C. D.5.若,,则()A. B.C. D.6.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④7.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个8.若,分别是方程,的解,则关于的方程的解的个数是()A B.C. D.9.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.10.下列各组函数是同一函数的是()①与;②与;③与;④与A.①② B.①③C.③④ D.①④二、填空题:本大题共6小题,每小题5分,共30分。11.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.12.已知平面向量,,,,,则的值是______13.若sinα<0且tanα>0,则α是第___________象限角14.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.15.已知函数,若,则实数的取值范围为______.16.过点,的直线的倾斜角为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围18.已知集合,B=[3,6].(1)若a=0,求;(2)xB是xA的充分条件,求实数a的取值范围.19.已知函数定义域为,若对于任意的,都有,且时,有.(1)判断并证明函数的奇偶性;(2)判断并证明函数的单调性;(3)若对所有,恒成立,求的取值范围.20.已知函数在闭区间()上的最小值为(1)求的函数表达式;(2)画出的简图,并写出的最小值21.已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记的值域分别为集合,设,若是成立的必要条件,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】先求得全集U和,根据补集运算的概念,即可得答案.【题目详解】由题意得全集,,所以.故选:D2、A【解题分析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.3、D【解题分析】由,可得当时,可求得函数y=ax+1﹣1(a>0,a≠1)所过定点.【题目详解】因为,所以当时有,,即当时,,则当时,,所以当时,恒有函数值.所以函数y=ax+1﹣1(a>0,a≠1)恒过的定点.故选:D【题目点拨】本题考查指数函数的图像性质,函数图像过定点,还可以由图像间的平移关系得到答案,属于基础题.4、A【解题分析】根据分段函数是上的增函数,则每一段都为增函数,且右侧的函数值不小于左侧的函数值求解.【题目详解】函数是上增函数,所以,解得,所以实数的取值范围是故选:A.5、C【解题分析】由题可得,从而可求出,即得.【题目详解】∵所以,又因为,,所以,即,所以,又因为,所以,故选:C6、D【解题分析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D7、C【解题分析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【题目详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C8、B【解题分析】∵,分别是方程,的解,∴,,∴,,作函数与的图象如下:结合图象可以知道,有且仅有一个交点,故,即分类讨论:()当时,方程可化为,计算得出,()当时,方程可化,计算得出,;故关于的方程的解的个数是,本题选择B选项.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围9、D【解题分析】根据正弦函数的定义可得选项.【题目详解】的终边上有一点,,.故选:D.10、C【解题分析】定义域相同,对应关系一致的函数是同一函数,由此逐项判断即可.【题目详解】①中的定义域为,的定义域也是,但与对应关系不一致,所以①不是同一函数;②中与定义域都是R,但与对应关系不一致,所以②不是同一函数;③中与定义域都是,且,对应关系一致,所以③是同一函数;④中与定义域和对应关系都一致,所以④是同一函数.故选C【题目点拨】本题主要考查同一函数的概念,只需定义域和对应关系都一致即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解题分析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【题目详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,12、【解题分析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【题目详解】由得,所以,所以所以.故答案为:13、第三象限角【解题分析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.14、﹣8【解题分析】根据AC的斜率等于AB的斜率得到,解方程即得解.【题目详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【题目点拨】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.15、或【解题分析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【题目详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.16、##【解题分析】设直线的倾斜角为,求出直线的斜率即得解.【题目详解】解:设直线的倾斜角为,由题得直线的斜率为,因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据即可求出实数a的值;(2)令,根据由求得的值,再根据正弦函数的性质分析的取值情况,结合题意即可得出答案.【小问1详解】解:,∴,∴;【小问2详解】解:令,则,由得,∵在[-,]上是增函数,在[,]上是减函数,且,∴时,x有两个值;或时,x有一个值,其它情况,x值不存在,∴时函数f(x)只有1个零点,时,,要f(x)有2个零点,有,∴时,,要f(x)有2个零点,有,综上,f(x)有两个零点时,a的取值范围是.18、(1)(2)【解题分析】(1)先化简集合A,再去求;(2)结合函数的图象,可以简单快捷地得到关于实数a的不等式组,即可求得实数a的取值范围.【小问1详解】当时,,又,故【小问2详解】由是的充分条件,得,即任意,有成立函数的图象是开口向上的抛物线,故,解得,所以a的取值范围为19、(1)为奇函数;证明见解析;(2)是在上为单调递增函数;证明见解析;(3)或.【解题分析】(1)根据已知等式,运用特殊值法和函数奇偶性的定义进行判断即可;(2)根据函数的单调性的定义,结合已知进行判断即可;(3)根据(1)(2),结合函数的单调性求出函数在的最大值,最后根据构造新函数,利用新函数的单调性进行求解即可.详解】(1)∵,令,得,∴,令可得:,∴,∴为奇函数;(2)∵是定义在上的奇函数,由题意设,则,由题意时,有,∴,∴是在上为单调递增函数;(3)∵在上为单调递增函数,∴在上的最大值为,∴要使,对所有,恒成立,只要,即恒成立;令,得,∴或.【题目点拨】本题考查了函数单调性和奇偶性的判断,考查了不等式恒成立问题,考查了数学运算能力.20、(1)(2)见解析【解题分析】【试题分析】(1)由于函数的对称轴为且开口向上,所以按三类,讨论函数的最小值.(2)由(1)将分段函数的图象画出,由图象可判断出函数的最小值.【试题解析】(1)依题意知,函数是开口向上的抛物线,∴函数有最小值,且当时,下面分情况讨论函数在闭区间()上的取值情况:①当闭区间,即时,在处取到最小值,此时;②当,即时,在处取到最小值,此时;③当闭区间,即时,在处取到最小值,此时综上,的函数表达式为(2)由(1)可知,为分段函数,作出其图象如图:由图像可知【题目点拨】本题主要考查二次函数在动区间上的最值问题,考查分类讨论的数学思想,考查数形结合的数学思想方法.由于二次函数的解析式是知道的,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗服务质量信息公开管理制度
- 医院暖气管道拆除安全施工方案
- 公益活动印刷服务支持方案
- 2024-2025学年黑龙江省龙东联盟高三上学期10月月考生物试题及答案
- 流行病学调查中的院感管理策略
- 电力设施建设合同条款
- 医疗机构运营安全及质量提升方案
- 娱乐场所安全应急方案
- 少年宫儿童安全防性侵方案
- 平安社区建设评价指标体系构建研究
- 第二版《高中物理题型笔记》上册
- 上海市大学生安全教育(2022级)学习通课后章节答案期末考试题库2023年
- 苏轼生平及创作整理
- 柴油发电机组应急预案
- 语文《猜猜他是谁》教案
- 绘本:让谁先吃好呢
- 宽容待人正确交往中小学生教育主题班会
- 移动通信网络运行维护管理规程
- 龙头股战法优质获奖课件
- 小班幼儿语言活动教案100篇
- 中国青瓷艺术鉴赏智慧树知到答案章节测试2023年丽水学院
评论
0/150
提交评论