广西河池市南丹县2024届数学九年级第一学期期末复习检测模拟试题含解析_第1页
广西河池市南丹县2024届数学九年级第一学期期末复习检测模拟试题含解析_第2页
广西河池市南丹县2024届数学九年级第一学期期末复习检测模拟试题含解析_第3页
广西河池市南丹县2024届数学九年级第一学期期末复习检测模拟试题含解析_第4页
广西河池市南丹县2024届数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西河池市南丹县2024届数学九年级第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二次函数的顶点坐标为()A. B. C. D.2.函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是(

)A. B. C. D.3.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.34.抛物线向左平移1个单位,再向下平移2个单位,所得到的抛物线是()A. B. C. D.5.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为()A.2 B. C. D.8.如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A. B.2 C.3 D.9.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A. B. C. D.10.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.12.如图,点是矩形的对角线上一点,正方形的顶点在边上,则的值为__________.13.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是.14.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.15.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.16.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________17.比较大小:________.(填“,或”)18.有一座抛物线形拱桥,正常水位时桥下水面宽为,拱顶距水面,在如图的直角坐标系中,该抛物线的解析式为___________.三、解答题(共66分)19.(10分)在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明利用手中的一副三角尺和一个量角器(如图所示)进行探究.(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是_________;(取三件中任意一件的可能性相同)(2)小明发现在、两把三角尺中各选一个角拼在一起(无重叠无缝隙)会得到一个更大的角,若每个角选取的可能性相同,请用画树状图或列表的方法说明拼成的角是钝角的概率是多少.20.(6分)如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.21.(6分)(1)解方程:.(2)已知:关于x的方程①求证:方程有两个不相等的实数根;②若方程的一个根是,求另一个根及k值.22.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.23.(8分)如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.(1)求证:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;(3)如果∠CAD=60°,DC=DE,求证:AE=AF.24.(8分)如图,在中,,,以为顶点在边上方作菱形,使点分别在边上,另两边分别交于点,且点恰好平分.(1)求证:;(2)请说明:.25.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.26.(10分)如图,在中,,点从点出发,以的速度向点移动,点从点出发,以的速度向点移动.如果两点同时出发,经过几秒后的面积等于?

参考答案一、选择题(每小题3分,共30分)1、D【分析】已知二次函数y=2x2+3为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【题目详解】∵y=2x2+3=2(x−0)2+3,∴顶点坐标为(0,3).故选:D.【题目点拨】本题考查了二次函数的性质:二次函数的图象为抛物线,则解析式为y=a(x−k)2+h的顶点坐标为(k,h),2、B【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致,由此即可解答.【题目详解】由解析式y=-kx2+k可得:抛物线对称轴x=0;选项A,由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,选项A错误;选项B,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,选项B正确;选项C,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,选项C错误;选项D,由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,选项D错误.故选B.【题目点拨】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.3、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【题目详解】连接OB,如图:

∵AB=BC,

∴,

∴OB⊥AC,

∴OB平分∠ABC,

∴∠ABO=∠ABC=×120°=60°,

∵OA=OB,

∴∠OAB=60°,

∵AD为直径,

∴∠ABD=90°,

在Rt△ABD中,AB=AD=3,

∴BD=.故选D.【题目点拨】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.4、B【分析】根据“左加右减、上加下减”的平移规律即可解答.【题目详解】解:抛物线向左平移1个单位,再向下平移2个单位,所得到的抛物线是,故答案为:B.【题目点拨】本题考查了抛物线的平移,解题的关键是熟知“左加右减、上加下减”的平移规律.5、B【解题分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【题目详解】A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.6、C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【题目详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【题目点拨】考点:1、中心对称图形;2、轴对称图形7、B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【题目详解】过P作x轴的垂线,交x轴于点A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故选B.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.8、C【分析】由垂径定理可得AD=BD,AE=CE,由三角形中位线定理可求解.【题目详解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故选:C.【题目点拨】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.9、B【分析】根据同角的余角相等得∠BCD=∠A,利用三角函数即可解题.【题目详解】解:在中,∵,,是斜边上的高,∴∠BCD=∠A(同角的余角相等),∴===,故选B.【题目点拨】本题考查了三角函数的余弦值,属于简单题,利用同角的余角相等得∠BCD=∠A是解题关键.10、B【题目详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题(每小题3分,共24分)11、【分析】由题中所给条件证明△ADF△ACG,可求出的值.【题目详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【题目点拨】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.12、【分析】先证明△AHE∽△CBA,得到HE与AH的倍数关系,则可知GF与AG的倍数关系,从而求解tan∠GAF的值.【题目详解】∵四边形是正方形,∴,∵∠AHE=∠ABC=90°,∠HAE=∠BCA,

∴△AHE∽△CBA,∴,即,设,则A,

∴,

∴.故答案为:.【题目点拨】本题主要考查相似三角形的判定和性质、正方形、矩形的性质、解直角三角形.利用参数求解是解答本题的关键.13、【题目详解】解:这个正十二面体,12个面上分别写有1~12这12个整数,其中是3的倍数或4的倍数的3,6,9,12,4,8,共6种情况,故向上一面的数字是3的倍数或4的倍数的概率是6/12=故答案为:.14、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【题目详解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案为1:1.【题目点拨】本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.15、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【题目详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【题目点拨】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.16、【分析】记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,求出,,,探究规律后即可解决问题.【题目详解】解:记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,∵,,,∴,∴.故答案为:.【题目点拨】本题考查了三角形中位线定理,三角形的面积,图形类规律探索等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.17、<【分析】比较与的值即可.【题目详解】∵,,,∴,故答案为:.【题目点拨】此题考查三角函数值,熟记特殊角度的三角函数值是解题的关键.18、y=-0.04(x-10)2+4【分析】根据题意设所求抛物线的解析式为y=a(x-h)2+k,由已知条件易知h和k的值,再把点C的坐标代入求出a的值即可;【题目详解】解:设所求抛物线的解析式为:y=a(x-h)2+k,并假设拱桥顶为C,如图所示:∵由AB=20,AB到拱桥顶C的距离为4m,则C(10,4),A(0,0),B(20,0)把A,B,C的坐标分别代入得a=-0.04,h=10,k=4抛物线的解析式为y=-0.04(x-10)2+4.故答案为y=-0.04(x-10)2+4.【题目点拨】本题考查二次函数的应用,熟练掌握并利用待定系数法求抛物线的解析式是解决问题的关键.三、解答题(共66分)19、(1)(2)【分析】(1)找到沿某条直线折叠,直线两旁的部分能够互相重合的图形是轴对称图形,判断出三个图形中轴对称图形的个数,从而可求得答案;(2)画好树状图,根据概率公式计算即可解答.【题目详解】解:(1)因为:等腰直角三角形,量角器是轴对称图形,所以小明在这三件文具中任取一件,结果是轴对称图形的概率是故答案为:(2)设90°的角即为,60°的角记为,45°的角记为,30°的角记为画树状图如图所示,一共有18种结果,每种结果出现的可能性是相同的,而其中可以拼成的这个角是钝角的结果有12种,∴这个角是钝角的概率是【题目点拨】此题为轴对称图形与概率的综合应用,考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.【分析】(1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,(2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,就是x2+4x﹣k=1有实数根,根据根的判别式求出k的取值范围.【题目详解】(1)一次函数y1=x+4的图象过A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函数y2=得,k=﹣3;(2)由(1)得反比例函数,由题意得,,解得,,,∴点B(﹣3,1)当y1>y2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x<﹣1;(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,即,方程=x+4有实数根,也就是x2+4x﹣k=1有实数根,∴16+4k≥1,解得,k≥﹣4,∵k≠1,∴k的取值范围为:k≥﹣4且k≠1.【题目点拨】此题考查待定系数法求函数解析式,函数图象与二元一次方程组的关系,一次函数与反比例函数交点的确定,正确理解题意是解题的关键.21、(1)x1=1,x1=1;(1)①见解析;②另一个根为1,【分析】(1)把方程x1﹣3x+1=0进行因式分解,变为(x﹣1)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;

(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有两个不相等的实数根;

②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【题目详解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①证明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)1﹣k﹣1=0,解得:k=﹣1,则原方程为:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一个根为1.【题目点拨】本题考查了一元二次方程ax1+bx+c=0(a,b,c是常数且a≠0)的根的判别式及根与系数的关系;根判别式△=b1−4ac:(1)当△>0时,一元二次方程有两个不相等的实数根;(1)当△=0时,一元二次方程有两个相等的实数根;(3)当△<0时,一元二次方程没有实数根;若x1,x1为一元二次方程的两根时,x1+x1=,x1∙x1=.22、(1)144°,1;(2)180;(3).【解题分析】试题分析:(1)用“经常参加”所占的百分比乘以360°计算得到“经常参加”所对应的圆心角的度数;先求出“经常参加”的人数,然后减去其它各组人数得出喜欢足球的人数;进而补全条形图;(2)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(3)先利用树状图展示所有12种等可能的结果数,找出选中的两个项目恰好是“乒乓球”、“篮球”所占结果数,然后根据概率公式求解.试题解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.23、(1)见解析;(2);(3)见解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.【题目详解】(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)证明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四边形ABCD内接于圆,∴∠ABD=∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论