版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.4力的合成和分解3.4力的合成和分解
如果蜘蛛网上的一根丝断了,网会倒向哪边?
一个静止的物体,在某平面上受到5个力作用,你能判断它将向哪个方向运动吗?如果我们能找到一种方法,即“用一个力的单独作用替代两个力的共同作用,而效果不变”,上述问题就迎刃而解了。你觉得这个力和被替代的两个力会有怎样的关系呢?如果蜘蛛网上的一根丝断了,网会倒向哪边?共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交于一点。共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交一、合力与分力
例如,两个小孩分别用力F1、F2共同提着一桶水,水桶静止;一个大人单独向上用力F也能提着这桶水,让水桶保持静止。
生活中常常见到这样的事例:一个力的单独作用与两个或者更多力的共同作用,其效果相同。一、合力与分力例如,两个小孩分别用力F1、F2
一盏吊灯悬吊在天花板上保持静止,悬线对吊灯的拉力是F,若用两根线共同悬挂吊灯,悬线上端分别固定在天花板的左右两处,线的拉力是F1和F2,也能产生使吊灯保持静止的效果F拉一盏吊灯悬吊在天花板上保持静止,悬线对吊灯的分力:几个力共同作用的效果跟某个力单独作用的效果相同。合力:一个力单独作用的效果跟某几个力共同作用的效果相同。合力合力合力分力:几个力共同作用的效果跟某个力单独作用的效果相同。合力:二、力的合成和分解力的合成:求几个力的合力的过程。合成力的分解:求一个力的分力的过程。分解二、力的合成和分解力的合成:求几个力的合力的过程。合成力的分F1F2同一直线上力的合成F合=F1+F2(最大)两个分力同向相加F1F2同一直线上力的合成F合=F1+F2(最大)两个分力同F1F2F合=F1-F2(最小)两个分力反向相减同一直线上力的合成F1F2F合=F1-F2(最小)两个分力反向相减同一直线上力F1F2互成角度的两个力怎样求合力?还能直接相加减吗?F1F2互成角度的两个力怎样求合力?还能直接相加减吗?实验探究两个互成角度的力的合成规律(阅读)如图甲,轻质小圆环挂在橡皮条的一端,另一端固定,橡皮条的长度为GE。在图乙中,用手通过两个弹簧测力计共同拉动小圆环。小圆环受到拉力F1、F2的共同作用,处于O点,橡皮条伸长的长度为EO。撒去F1、F2,改用一个力F单独拉住小圆环,仍使它处于0点。力F单独作用,与F1、F2共同作用的效果是一样的,都能使小圆环保持静止,由于两次橡皮条伸长的长度相同,即橡皮条对小圆环的拉力相同,所以F等于F1、F2的合力。我们要探究的是:合力F与F1、F2有什么关系?F1、F2的大小和方向都会对合力F产生影响,力的图示法能同时描述力的大小和方向,画出F、F1、F2(图丁),看看三者间是什么关系?说出你的猜想。怎样检验你的猜想,说出你的方法。实验探究两个互成角度的力的合成规律(阅读)如图甲,轻质小圆环实验探究两个互成角度的力的合成规律实验探究两个互成角度的力的合成规律力力的合成:平行四边形定则
通过多次的实验探究我们会发现,求两个力的合成,如果以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。这个规律叫作平行四边形定则。平行四边形力力的合成:平行四边形定则通过多次的实验探究我们会发现,
在上述实验中,如果把图乙和图丙的操作顺序对调,即先用拉力F把圆环拉到0点,再用拉力F1、和F2共同拉圆环产生相同效果,则F1、和F2可以看成F的分力,这就变成了“探究力的分解规律”的实验。由于各个力的数据都没有改变,因此力的分解也遵循平行四边形定则。力的分解:平行四边形定则在上述实验中,如果把图乙和图丙的操作顺序对调,F
需要指出的是,如果没有限制,对于同一条对角线,可以作出无数个不同的平行四边形。也就是说,同一个力F可以分解为无数对大小、方向不同的分力。一个已知力究竟应该怎样分解,要根据具体问题来确定。F需要指出的是,如果没有限制,对于同一条对角线,θ一个已知力究竟应该怎么样分解?重力产生的效果使物块沿斜面下滑使物块紧压斜面F2F1θmgFF1F2向上提向前拉按力的作用效果来分解θ一个已知力究竟应该怎么样分解?重力产生的效果使物块沿斜面下斜杀垂抠例1:如图,把一个物体放在倾角为O的斜面上,物体受重力G(物体还受到其他力的作用,图中没有画出)。现在需要沿平行于斜面方向和垂直于斜面方向对物体的运动分别进行研究,把重力G沿平行于斜面和垂直于斜面方向分解为F1和F2,求两个分力的大小。课堂练习θ解:如图所示GF2F1θ根据三角函数得:F1=GsinθF2=Gcosθ斜杀垂抠例1:如图,把一个物体放在倾角为O的斜面上,物体受重
如果两个以上的共点力作用在一个物体上,也可以应用平行四边形定则求出它们的合力。先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。F1F2F3F4F12F123F1234如果两个以上的共点力作用在一个物体上,也可以应例题:某物体受到一个大小为32N的力,方向水平向右,还受到另一个大小为44N的力,方向竖直向上。通过作图求出这两个力的合力F的大小和方向。解:
取10mm长的线段表示1N的力作出力的平行四边形定则如图所示合力大小F=54.4mm×1N/mm=54.4N用量角器测得合力F与力F1的夹角为
θ=54°
15NθF1F2F合作图时的注意事项:(1)合力、分力要共点,实线、虚线要分清(2)合力、分力的标度要相同,作图要准确(3)对角线要找准(4)力的箭头别忘画例题:某物体受到一个大小为32N的力,方向水平向右,还受到另①当θ=0°时,F=F1+F2(相加,合力与分力同向,最大)②当θ=180°时,F=|F1-F2|(相减,合力与分力中较大的力同向,最小)④合力的取值范围,|F1-F2|≤F≤F1+F2③当θ=120°时,F=F1=F2(相等)互成角度的两个力求合力大小最小最大①当θ=0°时,F=F1+F2②当θ=180°时,F=|F1课堂练习例2:有两个力,一个是10N,一个是2N,它们的合力有可能等于5N、10N、15N吗?合力的最大值是多少?最小值是多少?解:由合力的取值范围,|F1-F2|≤F≤F1+F2最小最大所以:|10-2|≤F≤10+28N≤F≤12N
所以,它们的合力有可能等于10N,不可能等于5N和15N,合力的最大值是12N,最小值是8N。课堂练习例2:有两个力,一个是10N,一个是2N,它们三、矢量和标量
力的合成,可以认为是力的相加。二力相加时,不能简单地把两个力的大小相加,而要按平行四边形定则来确定合力的大小和方向。三、矢量和标量力的合成,可以认为是力的相加。二
我们曾经学过位移。一个人从A走到B,发生的位移是AB,又从B走到C,发生的位移是BC。在整个运动过程中,这个人的位移是AC,AC是合位移。
如果平行地移动矢量BC,使它的始端B与第一次位移的始端A重合,于是我们看到,两次表示位移的线段构成了一个平行四边形的一组邻边,而表示合位移正是它们所夹的对角线AC。所以说,位移合成时也遵从平行四边形定则。ABC我们曾经学过位移。一个人从A走到B,发生的位①矢量:既有大小又有方向,相加时遵从平行四边形定则的物理量。例:位移(x)、速度(v)、加速度(a)、力(F)等例:质量、路程、功、电流等②标量:既有大小没有方向,相加时遵从算术法则的物理量。①矢量:既有大小又有方向,相加时遵从平行四边形定则的物理量。力的合成和分解—-【新教材】人教版高中物理必修第一册课件共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交与一点。一、合力与分力合力:一个力单独作用的效果跟某几个力共同作用的效果相同。分力:几个力共同作用的效果跟某个力单独作用的效果相同。二、力的合成和分解
①力的合成:求几个力的合力的过程。力的分解:求一个力的分力的过程。
②力的分解和力的合成都遵循平行四边形定则,如果没有限制,对于同一条对角线,可以作出无数个不同的平行四边形。
③力的分解按力的作用效果来分解,例如斜面上的重力的效果使物块沿斜面下滑和使物块紧压斜面,所以重力的分解就分为沿斜面向下的方向和垂直斜面向下的方向。共点力:几个力如果都作用在物体的同一点,或者它们的作用线相交①当θ=0°时,即两个力同向,F合=F1+F2(同向相加,合力与分力同向,合力最大)②当θ=180°时,即两个力反向,F合=|F1-F2|(反向相减,合力与分力中较大的力同向,合力最小)④合力的取值范围,|F1-F2|≤F合≤F1+F2③当θ=120°时,F合=F1=F2(相等)力的合成小结(合力在最大和最小值之间)三、矢量和标量①矢量:既有大小又有方向,相加时遵从平行四边形定则的物理量。例:位移(x)、速度(v)、加速度(a)、力(F)等例:质量、路程、功、电流等②标量:既有大小没有方向,相加时遵从算术法则的物理量。①当θ=0°时,即两个力同向,F合=F1+F2②当θ=1801.本该过节的母亲却留在家里,要给母亲过节的家人却外出游玩。这一情节引人入胜;令人哑然失笑;突出了母亲形象2.通读全文,我们能感受到:菜农是一位憨厚朴实、热爱生活、追求内心的宁静、做事专注认真、不怕别人嘲笑奚落的人。3.读了本文,我明白了在当今世俗的喧嚣中应保持自己内心的宁静,不为世俗所扰。文中的菜农能够在喧闹的菜市场沉浸于书本的美好中,沉浸于内心的宁静中。在生活中,我不会因某次月考的成功而骄傲。而要保持内心的宁静,继续努力前行。4.概括文章的主要内容。通篇阅读,分出层次,梳理情节,全盘把握,根据题干要求找出事件的中心内容,用自己的语言简洁概括。如可概括为“我”见到菜农后发生的几件事及对他态度的变化,由此表达了对菜农的敬佩之情。5.“不怕别人嘲笑奚落的人”理解错误。菜农具有憨厚朴实,做事专注认真,热爱生活,追求内心的宁静,不为名利所累的性格特点。6.要求学生仔细阅读文本,结合文本内容分析“成长”的含义即可。注意从两方面。一方面特教学生的成长;另一方面:特教老师和校长的心路历
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考地理一轮复习第十章区域可持续发展第35讲矿产资源合理开发和区域可持续发展-以德国鲁尔区为例教案湘教版
- 2024高考历史一轮复习方案专题十世界资本主义经济政策的调整和苏联社会主义建设专题整合备考提能教学案+练习人民版
- DB42-T 2338-2024 地质调查阶段海相页岩气选区评价技术要求
- 泰州市专业技术人员公修科目“沟通与协调能力”测试题及答案
- (3篇)2024年幼儿园读书节活动总结
- 物资的管理和控制措施
- 二零二五版「鸿诚担保招聘」人才测评与评估服务合同2篇
- 发起人与设立中公司
- 2024年海南工商职业学院高职单招职业适应性测试历年参考题库含答案解析
- 二零二五年度环保PPP项目合同风险防控与应对策略
- 实际控制人与法人协议模板
- 医疗器械质量安全风险会商管理制度
- 110kV变电站及110kV输电线路运维投标技术方案(第一部分)
- 绿色制造与可持续发展技术
- 污水处理厂单位、分部、分项工程划分
- 舌咽神经痛演示课件
- 子宫内膜癌业务查房课件
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
- 公路路基路面现场测试随机选点记录
评论
0/150
提交评论