2024届河北省博野县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2024届河北省博野县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2024届河北省博野县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2024届河北省博野县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2024届河北省博野县九年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省博野县九年级数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=482.某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为()A. B.C. D.3.如图,矩形的中心为直角坐标系的原点,各边分别与坐标轴平行,其中一边交轴于点,交反比例函数图像于点,且点是的中点,已知图中阴影部分的面积为,则该反比例函数的表达式是()A. B. C. D.4.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C.现有下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.45.如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则与的函数关系图象大致为()A. B.C. D.6.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣17.下面空心圆柱形物体的左视图是()A. B. C. D.8.起重机的滑轮装置如图所示,已知滑轮半径是10cm,当物体向上提升3πcm时,滑轮的一条半径OA绕轴心旋转的角度为()A. B.C. D.9.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣310.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.12.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.13.在中,若,则的度数是______.14.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.15.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.16.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m17.如图,小正方形构成的网络中,半径为1的⊙O在格点上,则图中阴影部分两个小扇形的面积之和为▲(结果保留).18.已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OA=2,双曲线经过点A.将△AOB绕点A顺时针旋转,使点O的对应点D落在x轴的负半轴上,若AB的对应线段AC恰好经过点O.(1)求点A的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由20.(6分)墙壁及淋浴花洒截面如图所示,已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为43°.求花洒顶端到地面的距离(结果精确到)(参考数据:,,)21.(6分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)图①中所画的四边形是中心对称图形;(2)图②中所画的四边形是轴对称图形;(3)所画的两个四边形不全等.22.(8分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?23.(8分)富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?24.(8分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老师放入了多少个红色小球.25.(10分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.26.(10分)今年下半年以来,猪肉价格不断上涨,主要是由非洲猪瘟疫情导致.非洲猪瘟疫情发病急,蔓延速度快.某养猪场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,按照这样的传染速度,3天后生猪发病头数会超过1500头吗?

参考答案一、选择题(每小题3分,共30分)1、D【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程.【题目详解】∵某超市一月份的营业额为36万元,每月的平均增长率为x,∴二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2.∴根据三月份的营业额为48万元,可列方程为36(1+x)2=48.故选D.【题目点拨】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.2、D【分析】根据题意利用基本数量关系即商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【题目详解】解:由题意可列方程是:.故选:D.【题目点拨】本题考查一元二次方程的应用最基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格.3、B【分析】根据反比例函数的对称性以及已知条件,可得矩形的面积是8,设,则,根据,可得,再根据反比例函数系数的几何意义即可求出该反比例函数的表达式.【题目详解】∵矩形的中心为直角坐标系的原点O,反比例函数的图象是关于原点对称的中心对称图形,且图中阴影部分的面积为8,

∴矩形的面积是8,

设,则,

∵点P是AC的中点,

∴,

设反比例函数的解析式为,

∵反比例函数图象于点P,

∴,

∴反比例函数的解析式为.

故选:B.【题目点拨】本题考查了待定系数法求反比例函数解析式,反比例函数系数的几何意义,得出矩形的面积是8是解题的关键.4、B【分析】由抛物线的开口方向,判断a与0的关系;由对称轴与y轴的位置关系,判断ab与0的关系;由抛物线与y轴的交点,判断c与0的关系,进而判断abc与0的关系,据此可判断①.由x=﹣2时,y=4a﹣2b+c,再结合图象x=﹣2时,y>0,即可得4a﹣2b+c与0的关系,据此可判断②.根据图象得对称轴为x=﹣>﹣1,即可得2a﹣b与0的关系,据此可判断③.由x=1时,y=a+b+c,再结合2a﹣b与0的关系,即可得3a+c与0的关系,据此可判断④.【题目详解】解:①∵抛物线的开口向下,∴a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;②如图,当x=﹣2时,y>0,即4a﹣2b+c>0,故②正确;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故③错误;④∵当x=1时,y=0,∴0=a+b+c,又∵2a﹣b<0,即b>2a,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,故④错误.综上所述,①②正确,即有2个结论正确.故选:B.【题目点拨】本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.5、C【分析】根据题意可以求出各段对应的函数解析式,再根据函数解析式即可判断哪个选项是符合题意的,本题得以解决.【题目详解】解:∵菱形ABCD的边长为4cm,∠A=60°,动点P,Q同时从点A出发,都以1cms的速度分别沿A→B→C和A→D→C的路径向点C运动,

∴△ABD是等边三角形,

∴当0<x≤4时,

y=×4×4×sin60°−x•sin60°x=4−x2=x2+4;

当4<x≤8时,

y=×4×4×sin60°−×(8−x)×(8−x)×sin60°=−x2+4x−12=−(x−8)2+4;∴选项C中函数图像符合题意,故选:C.【题目点拨】本题考查动点问题的函数图象,解答本题的关键是明确题意,求出各段对应的函数解析式,利用数形结合的思想解答.6、C【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【题目详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【题目点拨】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.7、A【解题分析】试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选A.8、A【分析】设半径OA绕轴心旋转的角度为n°,根据弧长公式列出方程即可求出结论.【题目详解】解:设半径OA绕轴心旋转的角度为n°根据题意可得解得n=54即半径OA绕轴心旋转的角度为54°故选A.【题目点拨】此题考查的是根据弧长,求圆心角的度数,掌握弧长公式是解决此题的关键.9、D【题目详解】因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.10、D【解题分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,所以∠ANM=∠AEB,则可求得②正确;根据三角形的外角的性质得到①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE=AN,再根据相似三角形的性质得到EF=MN,于是得到S△AEF=2S△AMN.故④正确.【题目详解】如图,把△ADF绕点A顺时针旋转90°得到△ABH由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正确∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正确,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正确连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正确故选D.【题目点拨】此题考查相似三角形全等三角形的综合应用,熟练掌握相似三角形,全等三角形的判定定理是解决此类题的关键.二、填空题(每小题3分,共24分)11、.【解题分析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.12、1【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【题目详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB=50,CD=15,CE=18,即,,解得x=1,经检验,x=1是原方程的解,即高为50m的旗杆的影长为1m.故答案为:1.【题目点拨】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.13、【分析】先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.【题目详解】在中,,,,,,,故答案为.【题目点拨】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.14、【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,【题目详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm

如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED-CD=(12-6)cm

∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-6)=(24-12)cm【题目点拨】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.15、【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为4.【题目详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+1.∴当x=4时,BD取得最小值为4.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC的最大值为4.故答案为:4.【题目点拨】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.16、6【分析】先求出飞机停下时,也就是滑行距离最远时,s最大时对应的t值,再求出最后2s滑行的距离.【题目详解】由题意,y=60t-t2,=−(t−20)2+600,即当t=20秒时,飞机才停下来.∴当t=18秒时,y=−(18−20)2+600=594m,故最后2s滑行的距离是600-594=6m故填:6.【题目点拨】本题考查了二次函数的应用.解题时,利用配方法求得t=20时,s取最大值,再根据题意进行求解.17、.【解题分析】如图,先根据直角三角形的性质求出∠ABC+∠BAC的值,再根据扇形的面积公式进行解答即可:∵△ABC是直角三角形,∴∠ABC+∠BAC=90°.∵两个阴影部分扇形的半径均为1,∴S阴影.18、③【分析】①利用可以用来判定二次函数与x轴交点个数,即可得出答案;②根据图中当时的值得正负即可判断;③由函数开口方向可判断的正负,根据对称轴可判断的正负,再根据函数与轴交点可得出的正负,即可得出答案;④根据方程可以看做函数,就相当于函数(a0)向下平移个单位长度,且与有两个交点,即可得出答案.【题目详解】解:①∵函数与轴有两个交点,∴,所以①错误;②∵当时,,由图可知当,,∴,所以②错误;③∵函数开口向上,∴,∵对称轴,,∴,∵函数与轴交于负半轴,∴,∴,所以③正确;④方程可以看做函数当y=0时也就是与轴交点,∵方程有两个不相等的实数根,∴函数与轴有两个交点∵函数就相当于函数向下平移个单位长度∴由图可知当函数向上平移大于2个单位长度时,交点不足2个,∴,所以④错误.正确答案为:③【题目点拨】本题考查了二次函数与系数的关系:可以用来判定二次函数与x轴交点的个数,当时,函数与x轴有2个交点;当时,函数与x轴有1个交点;当时,函数与x轴没有交点.;二次函数系数中决定开口方向,当时,开口向上,当时,开口向下;共同决定对称轴的位置,可以根据“左同右异”来判断;决定函数与轴交点.三、解答题(共66分)19、(1),双曲线的解析式为;(2)点在双曲线上,理由见解析.【分析】(1)根据旋转的性质和平行线的性质,得到,得到△AOD是等边三角形,根据特殊角的三角函数,求出点A的坐标,然后得到双曲线的解析式;(2)先求出OC的长度,然后利用特殊角的三角函数求出点C的坐标,然后进行判断即可.【题目详解】解:(1)过点A作轴,垂足为.∵轴,.有旋转的性质可知,...为等边三角形..,.点的坐标为.由题意知,,.双曲线的解析式为:.(2)点在双曲线上,理由如下:过点作轴,垂足为.由(1)知,...,.点的坐标为.将代入中,.点在双曲线上.【题目点拨】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,特殊角的三角函数等,求得△AOD是等边三角形是解题的关键.20、约为。【解题分析】过C作CF⊥AB于F,于是得到∠AFC=90°,解直角三角形即可得到结论.【题目详解】解:如图,过点作于点,则,在中,,∵,∴,∴,因此,花洒顶端到地面的距离约为。【题目点拨】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.21、(1)见解析;(2)见解析;(3)见解析【分析】(1)设小正方形的边长为1,由勾股定理可知,由图,结合题中要求可以OM,ON为邻边画一个菱形;(2)符合题意的有菱形、筝形等是轴对称图形;(3)图①和图②的两个四边形不能是完全相同的.【题目详解】解:(1)如图即为所求(2)如图即为所求【题目点拨】本题考查了轴对称与中心对称图形,属于开放题,熟练掌握轴对称与中心对称图形的含义是解题的关键.22、(4)证明见解析;(4)证明见解析;(4)4【解题分析】试题分析:(4)由作图知:PQ为线段AC的垂直平分线,得到AE=CE,AD=CD,由CF∥AB,得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA证得△AED≌△CFD;(4)由△AED≌△CFD,得到AE=CF,由EF为线段AC的垂直平分线,得到EC=EA,FC=FA,从而有EC=EA=FC=FA,利用四边相等的四边形是菱形判定四边形AECF为菱形;(4)在Rt△ADE中,由勾股定理得到ED=4,故EF=8,AC=6,从而得到菱形AECF的面积.试题解析:(4)由作图知:PQ为线段AC的垂直平分线,∴AE=CE,AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,∵∠EAC=∠FCA,AD=CD,∠CFD=∠AED,∴△AED≌△CFD;(4)∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形;(4)在Rt△ADE中,∵AD=4,AE=5,∴ED=4,∴EF=8,AC=6,∴S菱形AECF=8×6÷4=4,∴菱形AECF的面积是4.考点:4.菱形的判定;4.全等三角形的判定与性质;4.线段垂直平分线的性质.23、小丽为,小军为,这个游戏不公平,见解析【分析】画出树状图,得出总情况数及两次模到的球颜色相同和不同的情况数,即可得小丽与小明获胜的概率,根据概率即可得游戏是否公平.【题目详解】根据题意两图如下:共有种等情况数,其中两次模到的球颜色相同的情况数有种,不同的有种,小丽获胜的概率是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论