版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市清苑区北王力中学2024届九年级数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,则下列各式中不正确的是()A. B. C. D.2.把抛物线y=﹣x2向右平移1个单位,再向下平移2个单位,所得抛物线是()A.y=(x﹣1)+2 B.y=﹣(x﹣1)+2C.y=﹣(x+1)+2 D.y=﹣(x﹣1)﹣23.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.110 B.19 C.14.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.5.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°6.已知∠A是锐角,,那么∠A的度数是()A.15° B.30° C.45° D.60°7.如图,点O是△ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD=2OA,BE=2OB,CF=2OC,连接DE,EF,FD.若△ABC的面积是3,则阴影部分的面积是()A.6 B.15 C.24 D.278.参加一次聚会的每两人都握了一次手,所有人共握手10
次,若共有
x
人参加聚会,则根据题意,可列方程()A. B. C. D.9.在平面直角坐标系中,将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为()A. B.C. D.10.一元二次方程的一个根为,则的值为()A.1 B.2 C.3 D.411.如图,已知与位似,位似中心为点且的面积与面积之比为,则的值为()A. B.C. D.12.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.5二、填空题(每题4分,共24分)13.如图,是一个半径为,面积为的扇形纸片,现需要一个半径为的圆形纸片,使两张纸片刚好能组合成圆锥体,则_____.14.抛物线的顶点坐标是__________________.15.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.16.若,,是反比例函数图象上的点,且,则、、的大小关系是__________.17.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.18.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________.三、解答题(共78分)19.(8分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,她在地面上竖直立一根2米长的标杆CD,某一时刻测得其影长DE=1.2米,此时旗杆AB在阳光下的投影BF=4.8米,AB⊥BD,CD⊥BD.请你根据相关信息,求旗杆AB的高.20.(8分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,1.乙袋中的三张卡片所标的数值为﹣2,1,2.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.21.(8分)一次函数的图像与x轴相交于点A,与y轴相交于点B,二次函数图像经过点A、B,与x轴相交于另一点C.(1)求a、b的值;(2)在直角坐标系中画出该二次函数的图像;(3)求∠ABC的度数.22.(10分)如图,Rt△FHG中,H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数的图像与x轴交于A、B两点,与y轴交于点E(0,),顶点为C(1,),点D为二次函数图像的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图像对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值并判断以C、D、Q、P为顶点的四边形形状,请说明理由.23.(10分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.24.(10分)计算:(1)已知,求的值;(2)6cos245°﹣2tan30°•tan60°.25.(12分)将如图所示的牌面数字1、2、3、4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是奇数的概率是;(2)从中随机抽出两张牌,两张牌牌面数字的和是6的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用树状图或列表的方法求组成的两位数恰好是3的倍的概率.26.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,即AQ是⊙O的切线,若∠QAP=α,地球半径为R,求:(1)航天飞机距地球表面的最近距离AP的长;(2)P、Q两点间的地面距离,即的长.(注:本题最后结果均用含α,R的代数式表示)
参考答案一、选择题(每题4分,共48分)1、C【分析】依据比例的基本性质,将比例式化为等积式,即可得出结论.【题目详解】A.由可得,变形正确,不合题意;B.由可得,变形正确,不合题意;C.由可得,变形不正确,符合题意;D.由可得,变形正确,不合题意.故选C.【题目点拨】本题考查了比例的性质,此题比较简单,解题的关键是掌握比例的变形.2、D【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【题目详解】抛物线y=﹣x1向右平移1个单位,得:y=﹣(x﹣1)1;再向下平移1个单位,得:y=﹣(x﹣1)1﹣1.故选:D.【题目点拨】此题主要考查了二次函数与几何变换,正确记忆平移规律是解题关键.3、A【解题分析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.4、C【解题分析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.5、B【解题分析】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°-∠AOC)÷2=110°÷2=55°.故选B.6、C【分析】根据特殊角的三角函数值求解即可.【题目详解】∵,且∠A是锐角,∴∠A=45°.故选:C.【题目点拨】本题主要考查了特殊角的三角函数值,熟练掌握相关数值是解题关键.7、C【解题分析】根据三边对应成比例,两三角形相似,得到△ABC∽△DEF,再由相似三角形的性质即可得到结果.【题目详解】∵AD=2OA,BE=2OB,CF=2OC,∴===,∴△ABC∽△DEF,∴==,∵△ABC的面积是3,∴S△DEF=27,∴S阴影=S△DEF﹣S△ABC=1.故选:C.【题目点拨】本题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.8、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【题目详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【题目点拨】本题主要考查一元二次方程的应用.9、B【分析】直接关键二次函数的平移规律“左加右减,上加下减”解答即可.【题目详解】将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为:故选:B【题目点拨】本题考查的是二次函数的平移,掌握其平移规律是关键,需注意:二次函数平移时必须化成顶点式.10、B【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【题目详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,
∴22-3×2+k=0,
解得,k=2,
故选:B.【题目点拨】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11、A【分析】根据位似图形的性质得到AC:DF=3:1,AC∥DF,再证明∽,根据相似的性质进而得出答案.【题目详解】∵与位似,且的面积与面积之比为9:4,∴AC:DF=3:1,AC∥DF,∴∠ACO=∠DFO,∠CAO=∠FDO,∴∽,∴AO:OD=AC:DF=3:1.故选:A.【题目点拨】本题考查位似图形的性质,及相似三角形的判定与性质,注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.12、D【解题分析】根据二次函数的图象与性质即可求出答案.【题目详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【题目点拨】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题(每题4分,共24分)13、【分析】先根据扇形的面积和半径求出扇形的弧长,即圆锥底面圆的周长,再利用圆的周长公式即可求出R.【题目详解】解:设扇形的弧长为l,半径为r,∵扇形面积,∴,∴,∴.故答案为:.【题目点拨】本题主要考查圆锥的有关计算,掌握扇形的面积公式是解题的关键.14、(2,0).【分析】直接利用顶点式可知顶点坐标.【题目详解】顶点坐标是(2,0),故答案为:(2,0).【题目点拨】主要考查了求抛物线顶点坐标的方法.15、60°【解题分析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°16、【分析】根据“反比例函数”可知k=3,可知该函数图像过第一、三象限,在第一象限,y随x的增大而减小且y>0,在第三象限,y随x的增大而减小且y<0,据此进行排序即可.【题目详解】由题意可知该函数图像过第一、三象限,在第一象限,y随x的增大而减小且y>0,在第三象限,y随x的增大而减小且y<0,因为所以所以故答案填.【题目点拨】本题考查的是反比例函数的性质,能够熟练掌握反比例函数的性质是解题的关键.17、10000【解题分析】试题解析:设该水库中鲢鱼约有x条,由于李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,由此依题意得200:3=x:150,∴x=10000,∴估计出该水库中鲢鱼约有10000条.18、0.1【分析】先列举出所有上升数,再根据概率公式解答即可.【题目详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+1+3+2+1=36个.概率为36÷90=0.1.故答案为:0.1.三、解答题(共78分)19、旗杆AB的高为8m.【分析】证明△ABF∽△CDE,然后利用相似比计算AB的长.【题目详解】∵AB⊥BD,CD⊥BD,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴=,即,∴AB=8(m).答:旗杆AB的高为8m.【题目点拨】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.20、(1)(﹣7,﹣2),(﹣1,﹣2),(1,﹣2),(﹣7,1),(﹣1,1),(1,1),(﹣7,2),(﹣1,2),(1,2);(2).【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【题目详解】解:(1)列表如下:﹣7﹣11﹣2(﹣7,﹣2)(﹣1,﹣2)(1,﹣2)1(﹣7,1)(﹣1,1)(1,1)2(﹣7,2)(﹣1,2)(1,2)点A(x,y)共9种情况.(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是.21、(1),b=6;(2)见解析;(3)∠ABC=45°【分析】(1)根据已知条件求得点A、点B的坐标,再代入二次函数的解析式,即可求得答案;(2)根据列表、描点、依次连接即可画出该二次函数的图像;(3)作AD⊥BC,利用两点之间的距离公式求得的边长,再运用面积法求高的方法求得AD,最后用特殊角的三角函数值求得答案.【题目详解】(1)∵一次函数的图像与x轴相交于点A,与y轴相交于点B,∴令,则;令,则;∴点A、点B的坐标分别为:,∵二次函数图像经过点A、B,∴,解得:,∴,b=6;(2)由(1)知二次函数的解析式为:对称轴为直线:,与x轴的交点为.x-2-100.5123y0460.25640二次函数的图像如图:(3)如图,过A作AD⊥BC于D,AB=,CB=,,∵,,∴,解得:,在中,,∵,∴.故∠ABC=45°.【题目点拨】本题考查了一次函数和二次函数的性质,用待定系数法确定函数的解析式,勾股定理以及面积法求高的应用,解此题的关键是运用面积法求高的长,用特殊角的三角函数值求角的大小.22、(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【题目详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,),顶点为C(1,),∴y=a(x-1)2-4,代入E(0,),解得a=1,()(2)设G[a,0.6(a+1)],代入函数关系式,得,,解得a1=3.6,a2=-1(舍去),所以点G坐标为(3.6,2.76).S△FHG=6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以=0.6,设Q[n,0.6(n+1)],代入y=mx+m中,mn+m=0.6(n+1),m(n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y2=(x-1-m)2+0.6m-4,所以点D由点C向右平移m个单位,再向上平移0.6m个单位所得,过D作y轴的平行线,交x轴与K,再作CT⊥KD,交KD延长线与T,所以=0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【题目点拨】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.23、(1)证明见解析;(2)1;(3)证明见解析.【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【题目详解】解:(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,PD=,∴,解得OD=1,∴=2,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【题目点拨】本题是一道综合性的题目,考查了切线的判定和性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淋球菌性尿道炎病因介绍
- 泌尿生殖系统真菌病病因介绍
- (麦当劳餐饮运营管理资料)M008-三好六增创造价值
- 《工程精细化管理A》课件
- 开题报告:职业教育现场工程师培养的过程追踪与路径优化研究
- 中小学加固改造施工组织设计
- 2024-2025学年高一上学期《正确使用手机的科学建议》主题班会课件
- 开题报告:学前课程改革循证决策提质研究
- 开题报告:新时代加大国家语言文字推广力度实施战略研究
- 2024届内蒙古北重公司第三中学高三下学期第二次验收考试数学试题试卷
- 【MOOC】国际交流学术英文写作-湖南大学 中国大学慕课MOOC答案
- 【课件】第21课《小圣施威降大圣》课件2024-2025学年统编版语文七年级上册
- 《管理的实践》读后感
- 专升本数学知到智慧树章节测试课后答案2024年秋江苏财会职业学院
- 《技术的含义及作用》课件
- 全新药店劳动合同(2024版):员工福利、社会保险及假期规定2篇
- 《声波的反射和折射》课件
- 山西省2024年中考物理试题(含答案)
- 《忆读书》说课稿
- 国家职业技术技能标准 6-28-01-03 汽轮机运行值班员 人社厅发202226号
- 高空抛物安全宣传教育课件
评论
0/150
提交评论