




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1垂径定理
实践探究把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.活动一如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?·OABCDE活动二(1)是轴对称图形.直径CD所在的直线是它的对称轴(2)线段:
AE=BE⌒⌒弧:AC=BC,AD=BD⌒⌒把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC和BC
重合,AD和BD重合.⌒⌒⌒⌒·OABCDE垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.即AE=BECD⊥ABAD=BD,AC=BC⌒⌒⌒⌒若直径CD平分弦AB(不是直径),又有哪些线段,弧相等?CD与AB的位置关系如何?③AE=BE,由①CD是直径②CD⊥AB可推得⌒⌒⑤AD=BD.⌒⌒④AC=BC,②CD⊥AB,由①CD是直径③AE=BE⌒⌒④AC=BC,⌒⌒⑤AD=BD.可推得DCABEO几何语言表达垂径定理:推论:通常情况下的图为:oBMAoMA∵OM⊥AB于M∴AM=BM1:弦的垂直平分线经过
2:已知一无圆心的圆,怎样确定他的圆心呢?1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.·OABE练习解:答:⊙O的半径为5cm.在Rt△AOE中
此题用到的知识点是:垂径定理与勾股定理;此题用到的线段有:弦,弦心距,半径2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为矩形,又∵AC=AB∴AE=AD∴矩形ADOE为正方形.例3:半径为5的圆中,有两条平行弦AB和CD,并且AB=6,CD=8,求AB和CD间的距离..EF.EFDABCO(2)ABDC(1)O做这类问题是,思考问题一定要全面,考虑到多种情况.4.如图,已知⊙O的半径为6cm,弦AB与半径OA的夹角为30°,求弦AB的长.OAOCABM5.如图,已知⊙O的半径为6cm,弦AB与半径OC互相平分,交点为M,求弦AB的长.630°EB6:如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求这段弯路的半径.●OCDEF┗7..如图,有一圆弧形桥拱,拱形的半径为10米,桥拱的跨度AB=16米,则拱高为
米。AB·CD4O8.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.ED┌
600CD9.在直径为650mm的圆柱形油槽内装入一些油后,截面的油面宽AB=600mm,求油的最大深度.BAO600ø650DCED┌
600CDE课堂小结:
解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。.CDABOMNE.ACDBO.ABO1.过⊙o内一点M的最长的弦长为10㎝,最短弦长为8㎝,那么⊙o的半径是2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD,那么C到AB的距离等于3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1㎝,那么⊙O的半径为4.如图,在⊙O中弦AB⊥AC,OM⊥AB,ON⊥AC,垂足分别为M,N,且OM=2,0N=3,则AB=,AC=,OA=BAMCON5㎝1㎝或9㎝64Cm达标测评5.在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形ADOE是正方形.ABCODE谢谢!再见!不学自知,不问自晓,古今行事,未之有也.努力吧同学们!
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7.2m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年下学期高一英语外研社版同步经典题精练之信息匹配
- 光子祛斑护理
- 技能培训方案及培训计划表
- 台北企业管理提升培训
- 2025年九年级下学期物理模拟考试试题(适用沪科版)(含答案)
- 百岁寿宴活动策划方案
- 数学-黑龙江省齐齐哈尔市2025届高三下学期第二次模拟考试(齐齐哈尔二模)试题和答案
- 电工电子技术 课件 4. 单一参数正弦交流电路的测试
- 幼儿园秋季防汛安全教育
- 五人同主题教育
- 2025年汽车维修技能大赛理论知识考试题库及答案(共450题)
- 2024年南通市公安局苏锡通园区分局招聘警务辅助人员考试真题
- 2024-2025学年人教版初中地理七年级下册课件 第10章 第2节 巴西
- 2025年模具师傅考试题及答案
- 计算机科学与技术毕业论文-基于Internet的网络教学系统
- 2025年开封大学单招职业倾向性考试题库含答案
- 10.2 常见的酸和碱(课件)-2024-2025学年九年级化学人教版下册
- 地理视角解读电影《哪吒》-开学第一课-高中地理
- 门急诊陪诊管理制度
- 北京市丰台区2024-2025学年九年级上学期期末道德与法治试题(含答案)
- 原物料环保协议书范本
评论
0/150
提交评论