数学建模人口增长模型_第1页
数学建模人口增长模型_第2页
数学建模人口增长模型_第3页
数学建模人口增长模型_第4页
数学建模人口增长模型_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学建模人口增长模型摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会政治经济医疗就业等带来了一系列的问题。因此研究和解决人口问题在我国显得尤为重要。我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。人口每增加十亿的时间,有一百年缩短为十几年。我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。本论文中有两个模型::中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。(2):中国人口的Logistic图形,标出中国人口的实际统计数据进行比较。而且利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。关键字:人口预测;Malthus模型;Logistic模型;MATLAB软件问题背景及重述1.1问题的背景中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。我国自1973年全面推行计划生育以来,生育率迅速下降,取得了举世瞩目的成就,但全面建设小康社会仍面临着人口的形势和严峻挑战。随着我国经济的发展、国家人口政策的实施,未来我国人口高峰期到底有多少人口,专家学者们的预测结果不一。因此,根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。1.2问题的重述下表列出了中国1982~1998年的人口统计数据,取1982年为起始年(t=0),1982年的人口101654万人,人口自然增长率为14‰,以36亿作为我国人口的容纳量,试建立一个较好的人口数学模型并给出相应的算法和程序,并与实际人口进行比较。时间(年)198219831984198519861987人口(万人)101654103008104357105851107507109300时间(年)198819891990199119921993人口(万人)111026112704114333115823117171118517时间(年)19941995199619971998人口(万人)119850121121122389123626124810问题分析对于人口增长的问题,其影响因素有很多,比如:人口基数,出生率,死亡率,人口男女比例,人口年龄结构的组成,人口的迁入率和迁出率,人口的生育率和生育模式,国家的医疗发展情况,国家的政治策略等众多的因素。如果把这些因素都要考虑进去,则该问题根本无从下手。因此,应该根据中国人口自身发展的特点,选取相应的能够体现我国人口发展特点的模型。人口发展模型有连续形式和离散形式,因为题目所给的图11790-1980年间美国的人口数据图数据是每个年份的具体数据,可以将这些数据视为连续的。根据表格中的数据,我们使用MATLAB图11790-1980年间美国的人口数据图由分离变量法解得模型的解为对该模型两边同时取对数得到一次线性拟合函数取表中1982到1998年的数据在MATLAB中M文件(附录2)进行线性最小二乘拟合可得出:f=0.013141t-14.5121所以可知r=0.013141,p(t)=101654*exp(0.013141*(t-1982))用MATLAB进行指数拟合得到下图图2可以看出拟合曲线基本吻合,但是随着时间t的增加其误差逐渐加大,所以需要对其修正。5.2Logistic模型由假设二可知,记p(t)是第t年的人口数量,人口增长率r(p)是p的线性函数,r(p)=r-kp。最大人口容纳量为Pm。即当P=Pm时,增长率r(p)=0。所以,(5.2.1)同样利用分离变量法求得其解(5.2.2)根据(5.2.1)式作出的曲线图(图1)以及由(5.2.2)式作出p-t曲线图(图2)OOxEMBEDEquation.3图1曲线图OOxEMBEDEquation.3图1曲线图Ox图1曲线图图1图1曲线图图2p-t曲线图从上述曲线图以及表达式中,我们可以总结出如下规律:,它表明不管人口初始状态是什么样,人口总数最终都将趋于最大人口容纳量。当p(t)>pm时,<0;当p(t)<pm时,>0。它表明当人口数量超过最大人口容纳量时,人口数量将减少,当人口数量小于最大人口容纳量时,人口数量将增加。人口变化率在时取到最大值,即人口总数达到极限值一半之前是加速生长的,经过此点后,增长率会逐渐减小至0。采用非线性最小二乘估计法对参数r和pm进行估计,通过使用matlab编写程序(附录4)可得:r=0.01137,pm=3.7465e+04用MATLAB拟合图像如下图3模型检验及结果分析经过前面模型建立的工作,已建立出Malthus模型和Logisic模型。现在根据所建立的模型预测相关年份的人口数量,并与实际人口数量相比较以检验模型的优劣性。Malthus模型与Logistic模型对我国人数据的拟合结果年份实际人口/万计算人口P1计算人口P21982101654101650101650198310300810300010250019841043571043601033501985105851105740104201986107507107140105060198710930010856010592019881110261099901067901989112704111450107660199011433311292010853019911158231144201094101992117171115930110290199311851711746011118019941198501190201120701995121121120590112960199612238912219011386019971236261238001147701998124810125440115670对表中数据进行分析可知:对于短期预测,这两个模型基本一致,但使用模型一更简单;对于中长期预测,模型二要强于模型一。模型评价与推广优点:首先我们采用图表结合法,比较直观地表达出题中所给的信息,并据此得出了人口增长的基本规律。根据所给出的数据,对其进行分析得出了人口增长率与人口总数的线性关系,从而建立了人口阻滞增长模型,对未来人口数的预测作出了较为准确的判断。模型一是依据英国神父T·Malthus的发现建立了指数型增长模型,经过我们实际数据的检验,发现其人口早期的增长情况与Malthus模型的预测基本相符,然而随着时间的增加,该模型的预测结果明显出现了不合理性。其原因就是我们将人口增长率视为常数,因此需要对r进行修正。所以,我们将r表示为p的减函数,从而推导建立了模型二缺点:本文对模型一中的参数只做了线性估计,所以其计算结果与实际误差较大模型二中仅考虑了r与p的关系是线性的,没有考虑非线性关系参考文献[1].司守奎,孙兆亮,孙玺菁,周刚,仲维杰,康淑瑰.数学建模算法与应用(第二版).国防工业出版社,2016年[2].姜启源,谢金星,叶俊.数学模型(第四版).高等教育出版社·北京.2011年[3].储昌木,沈长春.数学建模及其应用.西南交通大学出版社·成都.2015年[4]胡守信,李柏年.基于MATLAB的数学实验[M].北京科学出版社.2004年6月[5]扬启帆,康旭升,等.数学模型[M].北京:高等教育出版社.2006年5月[6]于学军.《中国人口科学》2000年第2期,时间:2000-4-6,中国人口信息网.附录:symsxyx0=1982:1:1998y0=[101654103008104357105851107507109300111026112704114333115823117171118517119850121121122389123626124810]xlabel('x')ylabel('y')plot(x0,y0,'*')t=[1982:1:1998];y=[log(101654)log(103008)log(104357)log(105851)log(107507)log(109300)log(111026)log(112704)log(114333)log(115823)log(117171)log(118517)log(119850)log(121121)log(122389)log(123626)log(124810)]p1=polyfit(t,y,1);f=poly2str(p1,'t')symsxypx0=1982:1:1998y0=[101654103008104357105851107507109300111026112704114333115823117171118517119850121121122389123626124810]xlabel('x')ylabel('y')plot(x0,y0,'*')holdont=1982:1:1998p=101654.*exp(0.013141.*(t-1982))plot(x,p,'r','LineWidth',0.5);legend('原始数据散点图','指数拟合曲线');gridon;clc,cleara=tex

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论