Mali-G72 – 让明日科技今日成真_第1页
Mali-G72 – 让明日科技今日成真_第2页
Mali-G72 – 让明日科技今日成真_第3页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Mali-G72–让明日科技今日成真您可能会发觉每年到了这个时候,我们都会开始讨论最新的高端GPU。2017年也不例外,ARMMali团队宣布Mali-G72加入高端GPU产品系列。2017年高级移动设备GPU跟随去年Mali-G71的脚步,ARM今年在Computex2017大会上发布了基于Bifrost架构的Mali-G72,在更小面积与更低功耗的基础上,提供更强大的效能。Mali-G72不仅能应用到高保真手机游戏以及机器学习设备,还能将VR能力提升至全新境界。采用Mali-G72的设备,整体图形性能是前一代的1.4倍,无论业界要推出多么炫酷的应用,Mali-G72都已做好准备迎接挑战。·Mali-G72的亮点:o相较现有产品,设备性能提升40%o能效提升25%,芯片面积效能提升20%o机器学习效率提升17%o众多针对Bifrost的优化,包括缓冲记忆、区块拓展性,L1缓存尺寸高保真移动游戏崛起移动端设备高保真游戏的崛起是催生Mali-G72的重要力量。尽管《糖果传奇》(CandyCrush)等简单游戏仍有庞大市场,但复杂的游戏却也在不断地创收,中国移动游戏产业43%的收入都是由此而来。例如DigitalLegends公司的个人射击游戏《电磁风暴》(Afterpulse),在过去是不可能出现在移动平台上的。高顶点数所需的耗电量、众多图形命令、更复杂的顶点与像素着色器,以及诸如动态阴影等先进的图形效果,对于过去而言,实在是要求过高,且会降低质量与游戏时间。我们与生态系统内的伙伴和开发商共同探讨,通力合作,确保我们的产品能满足他们的不同需求。ARM与DigitalLegends的合作能支持最新的图形技术,并搭配ARM的优化工具以实现效能与效率最大化,与Mali-G71相比,Mali-G72写入带宽可节省42%。加上使用像素本地储存(PLS),可以再额外节省45%,让整体写入带宽一举节省68%。此类合作造就了Mali-G72的各种创新,并让移动游戏商得以实现如《电磁风暴》般的多功能游戏。*Newzoo对营收排名前200名的游戏所进行之研究支持下一代虚拟现实虚拟现实也在不断发展,所以ARM也要不断精进自己的技术,在市场中继续保有领先地位。超过50%现有的移动VR设备由Mali驱动,而搭载Mali的Mate9,是市面上第一个取得Daydream平台认证的VR设备之一,因此,我们首要任务是继续推动创新。你或许曾见过ARM最近在2017游戏开发者大会(GDC)中发布的CircuitVR展示,我们正致力开发移动Multiview等技术,以降低多次绘制同一图形的额外负担–就如同你通常会在VR环境中做的事一样(实际上你的两只眼睛需要一个完整的渲染绘制)。另外还要加上注视点渲染技术,也就是你只会看见与视网膜在一直线上的高解析影像,而当你突然需要渲染绘制四个或更多视野时,Multiview就真正派上用场了。其他像多重采样抗锯齿(MSAA)等技术则会让线条的某一边增加融入像素,使其看起来比较平滑,以降低VR头盔在近距离空间内偶尔会看到的锯齿效果。Mali-G72在最低的效能成本下,可达成8倍或16倍的MSAA。上述所提,当然是基于现存的创新科技,包括全调适纹理压缩技术(ASTC),让我们能整合高质量的纹理,且不需要与带宽进行妥协。优化设备上的机器学习如前所述,机器学习也是另一关键移动的使用案例,如今,机器学习通常在云端上进行,运用训练神经网络的大量数据集实现智能连接,但越来越多的数据也需要在设备端进行,比如像翻译这样的简单任务,通过云端持续传送大量数据,不但增加成本,而且速度也很慢。我希望智能手机能在我需要的时候干我所想;如果连接或数据传送需要等很长时间,那么这个设备再好我也不太想用,这也是为何业界开始研究“将机器学习界面放到设备本身”的原因。华为已预料到会有这种需求,以飞快的速度在八个月内推出搭载Mali-G71的Mate9。在这款手机上,机器学习算法会找出你最常用的应用程序,,并对其能耗性能进行优先设置,保证实现最优性能。基于Bifrost架构的Mali-G71已经相当擅长机器学习界面,如下图表-华为Mate9搭载Mali-G71MP8在执行AlexNet时,比具有类似图形性能的低阶独立显卡还要快上87%。而Mali-G72性能更好,我们之前讨论的算法优化及增加的高速缓存已经非常成熟,借由此大幅降低带宽,Mali-G72可以实现机器学习最大的效率与效能。我们是如何实现的呢?Bifrost架构的创新除了继续保持Bifrost最主要的高效能特色,像是CPU与GPU彼此间完整的系统一致性、索引式定位着色器等,Mali-G72同时还有多项新武器。优化算法效率以及强化复杂的图形性能与可扩展性,让Mali-G72成为明年横跨智能手机、虚拟现实、机器学习与其它高端移动产品中的最佳选择。看看ARM实际上在其中做了哪些改进?ARM增加了区块缓冲存储器(tilebuffermemory),以便让GPU在每个运行区块(tile)支持更多的储存空间。这可在轻负载情况下提升数据吞吐量,也让多重采样抗锯齿(MSAA,MultiSampleAnti-Aliasing)与像素本地储存(PLS,PixelLocalStorage)技术获得更佳的利用率,同时也显著提升效能与视觉质量。我们也重新平衡了执行引擎的数据路径,以移除某些鲜少使用的指令,并以更简单的指令顺序取而代之,以便降低使用面积与耗电,为我们的合作伙伴降低实施成本,并提升整套系统的效率。为了支持更高的图形复杂性,ARM已针对更多复杂运算进行优化,例如最频繁使用的互反平方根,并增加区块的缓存以加速数据存取。这些改变能改善高效能系统的性能扩展能力,同时也提供终端使用者更佳的图形体验。为了进一步降低带宽,ARM同时增加了一级缓存与写回缓存的大小,同时也改变指令缓存逻辑,以便在不增加整体面积与耗电情况下进行更佳利用,并减少对复杂内容产生的缓存遗漏情况。对于合作伙伴而言,如此细心地在效能与效率间取得平衡,对某些应用是极为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论