版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课程:土力学(SoilMechanics)
提问概率:65%
德国高校对于这门课的要求
Thiscourseaimsto:
Enablestudentsto appreciatetheroleofgeotechnicsincivilengineeringprojects.
Provideknowledgeandunderstandingof thefundamentalprinciplesofsoilasanengineeringmaterial.
课程提纲(德国大学):
SoilFormationSoilConsistencySoilCompactionSoilPermeability
Stresseswithinthesoil
APS模拟问题:(注意内容里的所有简单计算)这门课你的分数为什么这么高?
你能说下你这门课都学了哪些关于土的知识?土可以怎么分类?
什么是风化?
什么是土的粘性?
土的流性指数如何计算?
研究土囊的压实性有什么意义?哪些因素会影响压实性?
土囊会受哪些应力?
Soil
ChapterOne
SoilFormationandBasic-Relationships
Isanyuncementedorweaklycementedaccumulationofmineralparticles
formedbyweatheringofrocks,thevoidbetweentheparticlescontainingwater/orair.Weakcementationcanbeduetocarbonatesoroxidesprecipitatedbetweentheparticlesorduetoorganiccarbonatesoroxidesprecipitatedbetweentheparticlesorduetoorganicmatter.
Dependingonthemethodofdeposition,soilscanbegroupedintotwocategories:
Residualsoils:
Thesoilswhichremainattheplaceofdisintegrationofparentrock.
Transportedsoils:
Thesoils,whichcarriedawayfromtheirplaceofdisintegrationtosomeotherplacebytransportingagencies.
Thetransportingagenciesmaybeclassifiedas:
i) Water ii)wind iii)gravity iv)Ice
Soingeneralsoilisformedfromdisintegrationofrocksoverlayingthe
earthcrust.
wind
rain
Weathering
Whichareusuallyresultsfromatmosphericprocessesactionontherockatorneartheearthsurface.
Mechanical(Physicalweathering):
Alltypeofactionsthatcauseadisintegrationoftheparentrocksbyphysicalmeanssuchas,gravity,windandwater.Theproductofthistypeisrounded,subroundedorgranular,itsproductscalledcoarsegrainedsoile.g.(gravelandsand)theypresentinnatureinasinglegrainstructure.
Coarsegrainedsoil
Sand&Gravel
Cohesionlesssoil
Itpropertiesarethesameasparentrock.2-Chemicalweathering
Alltypesofchemicalreactionsthatoccurbetweenthemineralsoftherockandtheenvironment(air,wateret.)andwillendupbydisintegrationofparentrockintofinegrainparticles;theseproductshavedifferentpropertiesfromtheparentrock.Theypresentinnatureasalumpsofnumberofplatelikeparticles.
Thephysicalpropertyofthisproductdoesnotreflectthesamepropertiesoftheparentrocks.
Finegrainedsoil
Siltandclay
Cohesivematerial
Itspropertiesdonotreflectthesamepropertiesoftheparentrocks.
Soil
Gravel,Dia
Sand
Silt
Clay
Dia:equivalentsdiameter(mm)
Clayminerals:Therearetwobasicstructureunitsthatformtypesofthemineralsintheclay:
TetrahedralUnit:Consistsoffouroxygenatoms(orhydroxyls,ifneededtobalancethestructure)andonesiliconatom.
Elevation Tetrahedralsheet
OctahedralUnit(consistofsixhydroxylionatapicesofanoctahedralenclosinganaluminumionatthecenter).
FormationofMinerals
Thecombinationoftwosheetsofsilicaandgibbsiteindifferentarrangementsandconditionleadtotheformationofdifferentclaymineralssuchas:
KaoliniteMineral:
Thisisthemostcommonmineralisthekaolin.Thestructureiscomposedofasingletetrahedralsheetandasinglealuminaoctahedralsheetasshowninfigurebelow:
StrongHydrogenBondSonotaffectedbywater
AnditsalsocalledChinaclay3-
Illitehasabasicstructureconsistingoftwosilicasheetswithacentralaluminasheet.
Thereisapotassiumbondbetweenthelayers.
Montmorilloniteunit:ThebasicstructuralunitissimilartothatofIllite.
Highlyaffectedbywater
HighlyaffectedbywaterwithhighshrinkageandSwellanditiscalledexpansivesoil.
ClayParticle–waterrelations:
Innatureeverysoilparticleissurroundedbywater.Sincethecentersofpositiveandnegativechargesofwatermoleculesdonotcoincide,themoleculesbehavelikedipoles.Thenegativechargeonthesurfaceofthesoilparticlethereforeattractsthepositive(hydrogen)endofthewatermolecules.Morethanonelayerofwatermoleculessticksonsurfacewithconsiderableforcedecreasewithincreaseinthedistanceofthewatermoleculefromthesurface.Theelectricallyattractedwatersurroundstheclayparticleisknownasthediffuseddouble-layerofwater.Thewaterlocatedwithinthezoneofinfluenceisknownastheadsorbedlayerasshowninfigure:
ClayParticle
Diffusedoublelayer
Adsorbedwaterlayersurroundingasoilparticle
Claystructures:
-Dispersedstructure
-flocculatedstructure
Distinguishbetweenflocculatedanddispersedstructures
Flocculated Dispersed
Morestrength Lowerstrength
Permeabilityishigher permeabilityisless
Lowcompressibility highercompressibility
BasicRelationships:
Wt=Ww+Ws
Where"#:totalweightofsoil
""∶Weightofwater"%:Weightofsolid"&∶Weightofair≈0
VolumeVt=Vv+Vs=Va+Vw
+Vs
()∶TotalVolume(*:VolumeofVoid(+:Volumeofair(,∶Volumeofwater(-:VolumeofSoild
UnitWeight–Density
"#$%
! ='(%*+$,-'
'(%.#%/0+
=*'
2'
Watercontent%
34%=55∗899:; <4
56
Voidratio,e
e=v@
vA
Porosity(n%)
B%=DD∗899DE
AircontentA%
F%=DG∗899
DE
==5∗899
=6
BulkDensity(totaldensity),HE
ρ=JK
I @K
Drydensity,
HL;M==6
DE
(N=⁄4=O):;(SN)
=O
Dryunitweight(TL;M)56
TL;M=DE
(SU⁄=O)
Specificgravity,V6
!"=%"='"⁄("= '"
%& %& ("∗%&
!"=+"= &"⁄("= &" (itsvaluerangebetween2.6-2.85)
+& +& ("∗+&
SolidDensity,%"
%"='"
("
, +"
=&"
("
SomeUsefulCorrelation:
1-S.e=!".-.
2-/=0
120
0=/
13/
4=/(1−")
4=03-∗!"
120
120 120
%8=!"(12-)%& 9: +8=!"(12-)+&
120 120
%8=!"2"∗0%& 9: +8=!"2"∗0+&
%"=!"20%& 9: +"=!"20+&
120 120
%;:<=!"%& 9:+;= !"+&
120 120
10- %0==.=%́=%"?8−%&
11- +0==
=+́=!"31+
&
120
Sometypicalvaluesofvoidratio,moisturecontentinasaturatedcondition,anddryunitweightforsoilsinanaturalstatearegiveninthefollowingtable:
Table1-Voidratio,MoistureContent,andDryUnitWeightforsomeTypicalSoilsinaNaturalState.
TypeofSoil
Voidratio
Naturalmoisturecontentinasaturatedstate(%)
Dryunitweight,+;(@A⁄'B)
Looseuniformsand
0.8
30
14.5
Denseuniformsand
0.45
16
18
Looseangular-
grainedsiltysand
0.65
25
16
Denseangular-grainedsiltysand
0.4
15
19
Stiffclay
0.6
21
17
Softclay
0.9-1.4
30-50
11.5-14.5
Note:theweightofonekilogrammassis9.806Newton1kg=9.806N
Example-1:Initsconditionasoilsamplehasamassof2290gandavolumeof1.15*10-3m3.Afterbeingcompletelydriedinanoventhemassofthesampleis2035g.ThevalueofGsforthesoilis2.68.Determinethebulkdensity,unitweight,watercontent,voidratio,porosity,degreeofsaturationandaircontent.
Solution:
!"=%= '.')* =199034⁄56=1.99%8
& +.+,∗+*./ 9/
Unitweight,:=%8=1990∗9.8=19500=⁄56=19.53=⁄56
&
%? '')*A'*6,
Watercontent,>=%@= '*6, =0.125CD12.5%
:=F@(1+>I):
" 1+K ?
19.5=2.68(1+.125)∗10
1+K
e=0.538
M *.,6O
Porosity,n=+NM=+.,6O =0.3490~0.35
S.K=F@.>I
*.+',∗'.TO
Degreeofsaturation,S= *.,6O = 62.267%
Aircontent,A=n(1-S)=0.35(1-.62)=0.132
ChapterTwo
PlasticityofFineGrainedSoils
Plasticityistheabilityofasoiltoundergounrecoverabledeformationatconstantvolumewithoutcrackingorcrumbling.Itisduetothepresenceofclaymineralsororganicmaterial.
Consistencylimits(Atterberglimits):
Atterberg,aSwedishscientistdevelopedamethodfordescribingthelimitconsistencyoffinegrainedsoilsonthebasisofmoisturecontent.Theselimitsareliquidlimit,plasticlimitandshrinkagelimit.
Liquidlimit(L.L):isdefinedasthemoisturecontentinpercentatwhichthesoilchangesfromliquidtoplasticstate.
PlasticLimit(P.L.):Themoisturecontentsin%atwhichthesoilchangesfromplastictosemisolidstate.
ShrinkageLimit(S.L.):Themoisturecontentsin%atwhichthesoilchangesfromsemisolidtosolidstate.
PlasticityIndex(P.I.):itistherangeinmoisturecontentwhenthesoilexhibiteditsplasticbehavior:
!.#.=%.%–!.%.
LiquidityIndex(L.I.orIL):arelationbetweenthenaturalmoisturecontents(())and(L.L.)and(P.L.)inform:
If LI>1 ThenthesoilatLiquidstateIf LI=1thenthesoilatL.L.
If%#<1thenthesoilbelowL.L.
Activity:isthedegreeofplasticityoftheclaysizefractionofthesoilandisexpressedas:
!"#$%$#&= ).+
%-."/0&1$23405#$"/31
PlasticityChart:basedonAtterberglimits,theplasticitychartwasdevelopedbyCasagrandetoclassifythefinegrainedsoil.
Someusefulnotes:
%6∶Constantatallstages
Degreeofsaturation(S%)atS.L.andupto=100%
DegreeofSaturationintheregionfromS.L.andbelow<100%
%&'()=%&,&-./.
%0'()=%0,&-./.
1'()=1-./.
RelativeDensity:istherationoftheactualdensitytothemaximumpossibledensityofthesoilitisexpressedintermsofvoidratio.
23(%)= 16,7819
16,7−16;9
∗100
Or 23(%)==>?@A∗ =>BCD>?EB ∗100
=>B =>?@A8=>?EB
16,7:Thevoidratioofthesoilinitsloosestcondition16;9:Thevoidratioofthesoilinitsdensestcondition19:ThevoidratioofthesoilinitsnaturalconditionF'6,7:Maximumdryunitweight(at16;9)
F'6;9:Minimumdryunitweight(at16,7)
F'9:Naturaldryunitweight(at19)
RD
Description
G
0 - H
loose
1− 2
3 3
medium
2− 1
3
Dense
,-
Example1:foragranularsoil,given,!"#$=17.3*+,relativedensity=82%,
3=8%and45=2.65.If8,9:=0.44.whatwouldbe8,=>?whatwouldbethedryunitweightinthelooseststate?
Solution:
!"#$= @A ∗10 17.3= G.HI ∗10
BCDE BCDE
∴ 8:
=0.53 KL= DMNOPDE ∗100
DMNOPDMQE
0.82=DMNOPR.IS
DMNOPR.TT
∴ 8,=>=0.94
∴! (WXYZZ[8[X)= 45
! = 2.65
∗10
"#$
1+8,=> ^
=13.65_`⁄aS
1+0.94
Example2:agranularsoiliscompactedtomoistunitweightof20.45_`⁄aSatmoisturecontentof18%.Whatisrelativedensityofthecompactedsoil?Given,8,=>=0.85,8,9:=0.42Wcd45=2.65?
Solution:
^
!=@A(BCef)!
BCDE
20.45=G.HI(BCR.Bg)∗10
BCD
∴8:
=0.52 KL= DMNOPDE =
DMNOPDMQE
KL=0.85−0.52
0.85−0.42
∗100=76.74%
Example3:Adrysampleofsoilhavingthefollowingproperties,L.L.=52%,
P.L.=30%,45=2.7,e=0.53. Find:Shrinkagelimit,d#$density,dryunitweight,andaircontentatdrystate.
Solution
ChapterthreeSoilCompaction
Soilcompactionisoneofthemostcriticalcomponentsintheconstructionofroads,airfield,embankmentsandfoundations.Thedurabilityandstabilityofastructurearerelatedtotheachievementofpropersoilcompaction.Structuralfailureofroads,airfieldandthedamagecausedbyfoundationsettlementcanoftenbetracedbacktothefailuretoachievepropersoilcompaction.
Compactionofsoil:
Compactionistheprocessofincreasingthedensityofasoilbypackingtheparticlesclosertogetherwithareductioninthevolumeofaironly.Compactionincreasesthedrydensityanddecreasesthevoidratio.
Purposeofcompaction:
Increaseshearstrengthofsoil
Reducevoidratiothusreducepermeability
Controllingtheswell-shrinkagemovement
Reducesettlementunderworkingload
Preventthebuildupoflargewaterpressure
Factorsaffectingcompaction:
Watercontent
Typeofsoil
Compactionenergyoreffort
Allthesefactorsareshowninthefollowingfigures:
TheeffectoftypesofsoilonthedrydensityusingthesamecompactionEnergy.
Differentincompactionenergyandtypesofsoil
Theoryofcompaction:
Compactionistheprocessofreducingtheaircontentbytheapplicationofenergytothemoistsoil.Fromcompactiontestwecanfind:
Thereisauniquerelationshipbetweenthewatercontentandthedrydensityforspecificcompactionenergy.
Thereisonewatercontent(O.M.C.)(Optimummoisturecontent)atwhichthemaxdrydensityisachieved
ThetwoabovepointscanbeclearlyshownthroughthefollowingFigure:
ChapterFive
SoilPermeabilityandFlow
SOILPERMEABILITY
Amaterialispermeableifitcontainscontinuousvoids.Allmaterialssuchasrocks,concrete,soilsetc.arepermeable.Theflowofwaterthroughallofthemobeysapproximatelythesamelaws.Hence,thedifferencebetweentheflowofwaterthroughrockorconcreteisoneofdegree.Thepermeabilityofsoilshasadecisiveeffectonthestabilityoffoundations,seepagelossthroughembankmentsofreservoirs,drainageofsubgrades,excavationofopencutsinwaterbearingsand,rateofflowofwaterintowellsandmanyothers.
HydraulicGradient
Whenwaterflowsthroughasaturatedsoilmassthereiscertainresistancefortheflowbecauseofthepresenceofsolidmatter.However,thelawsoffluidmechanicswhichareapplicablefortheflowoffluidsthroughpipesarealsoapplicabletoflowofwaterthroughsoils.AsperBernoulli's
equation,thetotalheadatanypointinwaterundersteadyflowconditionmaybeexpressedas
Totalhead=pressurehead+velocityhead+elevationhead
HydraulicGradient
Whenwaterflowsthroughasaturatedsoilmassthereiscertainresistancefortheflowbecauseofthepresenceofsolidmatter.Thelawsoffluidmechanicswhichareapplicablefortheflowoffluidthroughpipesarealsoapplicabletoflowofwaterthroughsoils.Thetotalheadatanypointinwaterundersteadyflowconditionmaybeexpressedas:
Totalhead=pressurehead+velocityhead+elevationhead
TheflowofwaterthroughasampleofsoiloflengthLandcross-sectionalareaAasshowninfigure1:
!" = %"+
!. =%.+
'"+ +
*
"
() 2-
*
/
'/+ +
() 2-
Figure
(1)flowofwaterthroughasoilsample
Forallpracticalpurposesthevelocityheadisasmallquantityandmaybeneglected.
Thewaterflowsfromthehighertotalheadtolowertotalhead.SothewaterwillflowfrompointBtoC.
!"−!.=(%"+23)-(%.+27)
45 45
Where,%"and%.=89:*;<=>?ℎ:;A,'"and'.=PressureHead.Thelossofheadperunitlengthofflowmaybeexpressesas:
==ℎ
C
Whereiisthehydraulicgradient.
Hydraulicgradient:
Thepotentialdropbetweentwoadjacentequipotentialsdividedbythedistancebetweenthemisknownasthehydraulicgradient.
DARCY'SLAW
Darcyin1856derivedanempiricalformulaforthebehaviorofflowthroughsaturatedsoils.Hefoundthatthequantityofwaterqpersecflowingthroughacross-sectionalareaofsoilunderhydraulicgradient/canbeexpressedbytheformula
q=kiA
orthevelocityofflowcanbewrittenas
!=#
$
Wherekistermedthehydraulicconductivity(orcoefficientofpermeability)withunitsofvelocity.Thecoefficientofpermeabilityisinverselyproportionaltotheviscosityofwaterwhichdecreaseswithincreasingtemperature;therefore,permeabilitymeasurementatlaboratorytemperaturesshouldbecorrectedtothevaluesatstandardtemperatureof200Cusingthefollowingequation.
Where%&':Coefficientofpermeabilityat200C
%(:CofficientofpermeabilityatLab.Temperture0C
)(Viscosityofwateratlab.Temperature
)&'Viscosityofwaterat200C
Table(1):Theof!"
!#$
atdifferenttemperature.
DISCHARGEANDSEEPAGEVELOCITIES:
FigurebelowshowsasoilsampleoflengthLandcross-sectionalareaA.Thesampleisplacedinacylindricalhorizontaltubebetweenscreens.ThetubeisconnectedtotworeservoirsR1andR2inwhichthewaterlevelsaremaintainedconstant.ThedifferenceinheadbetweenR1andR2ish.Thisdifferenceinheadisresponsiblefortheflowofwater.SinceDarcy'slawassumesnochangeinthevolumeofvoidsandthesoilissaturated,thequantityofflowpastsectionsAA,BBandCCshouldremainthesameforsteadyflowconditions.Wemayexpresstheequationofcontinuityasfollows
qaa=qbb=qcc
Ifthesoilberepresentedasdividedintosolidmatterandvoidspace,thentheareaavailableforthepassageofwaterisonlyAv.Ifvs.isthevelocityofflowinthevoids,andv,theaveragevelocityacrossthesectionthen,wehave
Where!"istheareaofthevoid,#$istheseepagevelocity,#istheapproachvelocity
A:isthecrosssectionalareaofthesample
#= !∗(
$ !"∗(
Wheren:istheporosityofthesoil
#=#)
#"
#=#
*
METHODSOFDETERMINATIONOFHYDRAULIC
CONDUCTIVITYOFSOILS(Coefficientofpermeability).
Stresseswithinthesoil
Stresseswithinthesoil:Typesofstresses:
Geostaticstress:SubSurfaceStressescausebymassofsoil
Verticalstress !"=∑#ℎ
HorizontalStress!"='(!"
Note:Geostaticstressesincreasedlineralywithdepth.2-Stressesduetosurfaceloading:
Infintlyloadedarea(filling)
Pointload(concentratedload)
Circularloadedarea.
Rectangularloadedarea.
Introduction:
Atapointwithinasoilmass,stresseswillbedevelopedasaresultofthesoillyingabovethepoint(Geostaticstress)andbyanystructureorotherloadingimposedintothatsoilmass.
1-
stressesdueGeostaticsoilmass
!"= #ℎ(Geostaticstress)
!)=*(!" , where*(:isthecoefficientofearthpressureatrest.
EFFECTIVESTRESSCONCEPT:Insaturatedsoils,thenormalstress(σ)atanypointwithinthesoilmassissharedbythesoilgrainsandthewaterheldwithinthepores.Thecomponentofthenormalstressactingonthesoilgrains,iscalledeffectivestressorintergranularstress,andisgenerallydenotedbyσ'.Theremainder,thenormalstressactingontheporewater,isknowsasporewaterpressureorneutralstress,andisdenotedbyu.Thus,thetotalstressatanypointwithinthesoilmasscanbewrittenas:
!="#́+u
This
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业维修合同:围墙整治与修缮条款3篇
- 公共设施用地租赁合同协议书
- 铁路出发行合同
- 国际展览综合楼租赁合同
- 橄榄球场建设合同
- 银行信贷专员聘用合同格式
- 办公设备租赁合同示范文本
- 亲子餐厅厨师劳务聘用协议
- 体育赛事场地租赁协议样本
- 砂石销售合同范例解析
- 现代学徒制课题:数字化时代中国特色学徒制创新发展路径研究(附:研究思路模板、可修改技术路线图)
- 广东省汕头市潮阳区2023-2024学年高二上学期期末考试 地理 含答案
- 中考语文真题专题复习 小说阅读(第01期)(解析版)
- 国家电网招聘之财务会计类题库有答案
- 机械工程测试技术知到智慧树章节测试课后答案2024年秋安徽理工大学
- DB36T 1476-2021 碳普惠平台建设技术规范
- 中华民族现代文明有哪些鲜明特质建设中华民族现代文明的路径是什么
- 《信息系统培训》课件
- GB 45067-2024特种设备重大事故隐患判定准则
- 【MOOC】金羽飞扬-世界冠军的羽毛球课堂-哈尔滨工业大学 中国大学慕课MOOC答案
- 2022-2023学年上海市徐汇中学七年级(下)期中语文试卷
评论
0/150
提交评论