aps宝典提纲版英语7土力学_第1页
aps宝典提纲版英语7土力学_第2页
aps宝典提纲版英语7土力学_第3页
aps宝典提纲版英语7土力学_第4页
aps宝典提纲版英语7土力学_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课程:土力学(SoilMechanics)

提问概率:65%

德国高校对于这门课的要求

Thiscourseaimsto:

Enablestudentsto appreciatetheroleofgeotechnicsincivilengineeringprojects.

Provideknowledgeandunderstandingof thefundamentalprinciplesofsoilasanengineeringmaterial.

课程提纲(德国大学):

SoilFormationSoilConsistencySoilCompactionSoilPermeability

Stresseswithinthesoil

APS模拟问题:(注意内容里的所有简单计算)这门课你的分数为什么这么高?

你能说下你这门课都学了哪些关于土的知识?土可以怎么分类?

什么是风化?

什么是土的粘性?

土的流性指数如何计算?

研究土囊的压实性有什么意义?哪些因素会影响压实性?

土囊会受哪些应力?

Soil

ChapterOne

SoilFormationandBasic-Relationships

Isanyuncementedorweaklycementedaccumulationofmineralparticles

formedbyweatheringofrocks,thevoidbetweentheparticlescontainingwater/orair.Weakcementationcanbeduetocarbonatesoroxidesprecipitatedbetweentheparticlesorduetoorganiccarbonatesoroxidesprecipitatedbetweentheparticlesorduetoorganicmatter.

Dependingonthemethodofdeposition,soilscanbegroupedintotwocategories:

Residualsoils:

Thesoilswhichremainattheplaceofdisintegrationofparentrock.

Transportedsoils:

Thesoils,whichcarriedawayfromtheirplaceofdisintegrationtosomeotherplacebytransportingagencies.

Thetransportingagenciesmaybeclassifiedas:

i) Water ii)wind iii)gravity iv)Ice

Soingeneralsoilisformedfromdisintegrationofrocksoverlayingthe

earthcrust.

wind

rain

Weathering

Whichareusuallyresultsfromatmosphericprocessesactionontherockatorneartheearthsurface.

Mechanical(Physicalweathering):

Alltypeofactionsthatcauseadisintegrationoftheparentrocksbyphysicalmeanssuchas,gravity,windandwater.Theproductofthistypeisrounded,subroundedorgranular,itsproductscalledcoarsegrainedsoile.g.(gravelandsand)theypresentinnatureinasinglegrainstructure.

Coarsegrainedsoil

Sand&Gravel

Cohesionlesssoil

Itpropertiesarethesameasparentrock.2-Chemicalweathering

Alltypesofchemicalreactionsthatoccurbetweenthemineralsoftherockandtheenvironment(air,wateret.)andwillendupbydisintegrationofparentrockintofinegrainparticles;theseproductshavedifferentpropertiesfromtheparentrock.Theypresentinnatureasalumpsofnumberofplatelikeparticles.

Thephysicalpropertyofthisproductdoesnotreflectthesamepropertiesoftheparentrocks.

Finegrainedsoil

Siltandclay

Cohesivematerial

Itspropertiesdonotreflectthesamepropertiesoftheparentrocks.

Soil

Gravel,Dia

Sand

Silt

Clay

Dia:equivalentsdiameter(mm)

Clayminerals:Therearetwobasicstructureunitsthatformtypesofthemineralsintheclay:

TetrahedralUnit:Consistsoffouroxygenatoms(orhydroxyls,ifneededtobalancethestructure)andonesiliconatom.

Elevation Tetrahedralsheet

OctahedralUnit(consistofsixhydroxylionatapicesofanoctahedralenclosinganaluminumionatthecenter).

FormationofMinerals

Thecombinationoftwosheetsofsilicaandgibbsiteindifferentarrangementsandconditionleadtotheformationofdifferentclaymineralssuchas:

KaoliniteMineral:

Thisisthemostcommonmineralisthekaolin.Thestructureiscomposedofasingletetrahedralsheetandasinglealuminaoctahedralsheetasshowninfigurebelow:

StrongHydrogenBondSonotaffectedbywater

AnditsalsocalledChinaclay3-

Illitehasabasicstructureconsistingoftwosilicasheetswithacentralaluminasheet.

Thereisapotassiumbondbetweenthelayers.

Montmorilloniteunit:ThebasicstructuralunitissimilartothatofIllite.

Highlyaffectedbywater

HighlyaffectedbywaterwithhighshrinkageandSwellanditiscalledexpansivesoil.

ClayParticle–waterrelations:

Innatureeverysoilparticleissurroundedbywater.Sincethecentersofpositiveandnegativechargesofwatermoleculesdonotcoincide,themoleculesbehavelikedipoles.Thenegativechargeonthesurfaceofthesoilparticlethereforeattractsthepositive(hydrogen)endofthewatermolecules.Morethanonelayerofwatermoleculessticksonsurfacewithconsiderableforcedecreasewithincreaseinthedistanceofthewatermoleculefromthesurface.Theelectricallyattractedwatersurroundstheclayparticleisknownasthediffuseddouble-layerofwater.Thewaterlocatedwithinthezoneofinfluenceisknownastheadsorbedlayerasshowninfigure:

ClayParticle

Diffusedoublelayer

Adsorbedwaterlayersurroundingasoilparticle

Claystructures:

-Dispersedstructure

-flocculatedstructure

Distinguishbetweenflocculatedanddispersedstructures

Flocculated Dispersed

Morestrength Lowerstrength

Permeabilityishigher permeabilityisless

Lowcompressibility highercompressibility

BasicRelationships:

Wt=Ww+Ws

Where"#:totalweightofsoil

""∶Weightofwater"%:Weightofsolid"&∶Weightofair≈0

VolumeVt=Vv+Vs=Va+Vw

+Vs

()∶TotalVolume(*:VolumeofVoid(+:Volumeofair(,∶Volumeofwater(-:VolumeofSoild

UnitWeight–Density

"#$%

! =&#'(%*+$,-'

&#'(%.#%/0+

=*'

2'

Watercontent%

34%=55∗899:; <4

56

Voidratio,e

e=v@

vA

Porosity(n%)

B%=DD∗899DE

AircontentA%

F%=DG∗899

DE

==5∗899

=6

BulkDensity(totaldensity),HE

ρ=JK

I @K

Drydensity,

HL;M==6

DE

(N=⁄4=O):;(SN)

=O

Dryunitweight(TL;M)56

TL;M=DE

(SU⁄=O)

Specificgravity,V6

!"=%"='"⁄("= '"

%& %& ("∗%&

!"=+"= &"⁄("= &" (itsvaluerangebetween2.6-2.85)

+& +& ("∗+&

SolidDensity,%"

%"='"

("

, +"

=&"

("

SomeUsefulCorrelation:

1-S.e=!".-.

2-/=0

120

0=/

13/

4=/(1−")

4=03-∗!"

120

120 120

%8=!"(12-)%& 9: +8=!"(12-)+&

120 120

%8=!"2"∗0%& 9: +8=!"2"∗0+&

%"=!"20%& 9: +"=!"20+&

120 120

%;:<=!"%& 9:+;= !"+&

120 120

10- %0==.=%́=%"?8−%&

11- +0==

=+́=!"31+

&

120

Sometypicalvaluesofvoidratio,moisturecontentinasaturatedcondition,anddryunitweightforsoilsinanaturalstatearegiveninthefollowingtable:

Table1-Voidratio,MoistureContent,andDryUnitWeightforsomeTypicalSoilsinaNaturalState.

TypeofSoil

Voidratio

Naturalmoisturecontentinasaturatedstate(%)

Dryunitweight,+;(@A⁄'B)

Looseuniformsand

0.8

30

14.5

Denseuniformsand

0.45

16

18

Looseangular-

grainedsiltysand

0.65

25

16

Denseangular-grainedsiltysand

0.4

15

19

Stiffclay

0.6

21

17

Softclay

0.9-1.4

30-50

11.5-14.5

Note:theweightofonekilogrammassis9.806Newton1kg=9.806N

Example-1:Initsconditionasoilsamplehasamassof2290gandavolumeof1.15*10-3m3.Afterbeingcompletelydriedinanoventhemassofthesampleis2035g.ThevalueofGsforthesoilis2.68.Determinethebulkdensity,unitweight,watercontent,voidratio,porosity,degreeofsaturationandaircontent.

Solution:

!"=%= '.')* =199034⁄56=1.99%8

& +.+,∗+*./ 9/

Unitweight,:=%8=1990∗9.8=19500=⁄56=19.53=⁄56

&

%? '')*A'*6,

Watercontent,>=%@= '*6, =0.125CD12.5%

:=F@(1+>I):

" 1+K ?

19.5=2.68(1+.125)∗10

1+K

e=0.538

M *.,6O

Porosity,n=+NM=+.,6O =0.3490~0.35

S.K=F@.>I

*.+',∗'.TO

Degreeofsaturation,S= *.,6O = 62.267%

Aircontent,A=n(1-S)=0.35(1-.62)=0.132

ChapterTwo

PlasticityofFineGrainedSoils

Plasticityistheabilityofasoiltoundergounrecoverabledeformationatconstantvolumewithoutcrackingorcrumbling.Itisduetothepresenceofclaymineralsororganicmaterial.

Consistencylimits(Atterberglimits):

Atterberg,aSwedishscientistdevelopedamethodfordescribingthelimitconsistencyoffinegrainedsoilsonthebasisofmoisturecontent.Theselimitsareliquidlimit,plasticlimitandshrinkagelimit.

Liquidlimit(L.L):isdefinedasthemoisturecontentinpercentatwhichthesoilchangesfromliquidtoplasticstate.

PlasticLimit(P.L.):Themoisturecontentsin%atwhichthesoilchangesfromplastictosemisolidstate.

ShrinkageLimit(S.L.):Themoisturecontentsin%atwhichthesoilchangesfromsemisolidtosolidstate.

PlasticityIndex(P.I.):itistherangeinmoisturecontentwhenthesoilexhibiteditsplasticbehavior:

!.#.=%.%–!.%.

LiquidityIndex(L.I.orIL):arelationbetweenthenaturalmoisturecontents(())and(L.L.)and(P.L.)inform:

If LI>1 ThenthesoilatLiquidstateIf LI=1thenthesoilatL.L.

If%#<1thenthesoilbelowL.L.

Activity:isthedegreeofplasticityoftheclaysizefractionofthesoilandisexpressedas:

!"#$%$#&= ).+

%-."/0&1$23405#$"/31

PlasticityChart:basedonAtterberglimits,theplasticitychartwasdevelopedbyCasagrandetoclassifythefinegrainedsoil.

Someusefulnotes:

%6∶Constantatallstages

Degreeofsaturation(S%)atS.L.andupto=100%

DegreeofSaturationintheregionfromS.L.andbelow<100%

%&'()=%&,&-./.

%0'()=%0,&-./.

1'()=1-./.

RelativeDensity:istherationoftheactualdensitytothemaximumpossibledensityofthesoilitisexpressedintermsofvoidratio.

23(%)= 16,7819

16,7−16;9

∗100

Or 23(%)==>?@A∗ =>BCD>?EB ∗100

=>B =>?@A8=>?EB

16,7:Thevoidratioofthesoilinitsloosestcondition16;9:Thevoidratioofthesoilinitsdensestcondition19:ThevoidratioofthesoilinitsnaturalconditionF'6,7:Maximumdryunitweight(at16;9)

F'6;9:Minimumdryunitweight(at16,7)

F'9:Naturaldryunitweight(at19)

RD

Description

G

0 - H

loose

1− 2

3 3

medium

2− 1

3

Dense

,-

Example1:foragranularsoil,given,!"#$=17.3*+,relativedensity=82%,

3=8%and45=2.65.If8,9:=0.44.whatwouldbe8,=>?whatwouldbethedryunitweightinthelooseststate?

Solution:

!"#$= @A ∗10 17.3= G.HI ∗10

BCDE BCDE

∴ 8:

=0.53 KL= DMNOPDE ∗100

DMNOPDMQE

0.82=DMNOPR.IS

DMNOPR.TT

∴ 8,=>=0.94

∴! (WXYZZ[8[X)= 45

! = 2.65

∗10

"#$

1+8,=> ^

=13.65_`⁄aS

1+0.94

Example2:agranularsoiliscompactedtomoistunitweightof20.45_`⁄aSatmoisturecontentof18%.Whatisrelativedensityofthecompactedsoil?Given,8,=>=0.85,8,9:=0.42Wcd45=2.65?

Solution:

^

!=@A(BCef)!

BCDE

20.45=G.HI(BCR.Bg)∗10

BCD

∴8:

=0.52 KL= DMNOPDE =

DMNOPDMQE

KL=0.85−0.52

0.85−0.42

∗100=76.74%

Example3:Adrysampleofsoilhavingthefollowingproperties,L.L.=52%,

P.L.=30%,45=2.7,e=0.53. Find:Shrinkagelimit,d#$density,dryunitweight,andaircontentatdrystate.

Solution

ChapterthreeSoilCompaction

Soilcompactionisoneofthemostcriticalcomponentsintheconstructionofroads,airfield,embankmentsandfoundations.Thedurabilityandstabilityofastructurearerelatedtotheachievementofpropersoilcompaction.Structuralfailureofroads,airfieldandthedamagecausedbyfoundationsettlementcanoftenbetracedbacktothefailuretoachievepropersoilcompaction.

Compactionofsoil:

Compactionistheprocessofincreasingthedensityofasoilbypackingtheparticlesclosertogetherwithareductioninthevolumeofaironly.Compactionincreasesthedrydensityanddecreasesthevoidratio.

Purposeofcompaction:

Increaseshearstrengthofsoil

Reducevoidratiothusreducepermeability

Controllingtheswell-shrinkagemovement

Reducesettlementunderworkingload

Preventthebuildupoflargewaterpressure

Factorsaffectingcompaction:

Watercontent

Typeofsoil

Compactionenergyoreffort

Allthesefactorsareshowninthefollowingfigures:

TheeffectoftypesofsoilonthedrydensityusingthesamecompactionEnergy.

Differentincompactionenergyandtypesofsoil

Theoryofcompaction:

Compactionistheprocessofreducingtheaircontentbytheapplicationofenergytothemoistsoil.Fromcompactiontestwecanfind:

Thereisauniquerelationshipbetweenthewatercontentandthedrydensityforspecificcompactionenergy.

Thereisonewatercontent(O.M.C.)(Optimummoisturecontent)atwhichthemaxdrydensityisachieved

ThetwoabovepointscanbeclearlyshownthroughthefollowingFigure:

ChapterFive

SoilPermeabilityandFlow

SOILPERMEABILITY

Amaterialispermeableifitcontainscontinuousvoids.Allmaterialssuchasrocks,concrete,soilsetc.arepermeable.Theflowofwaterthroughallofthemobeysapproximatelythesamelaws.Hence,thedifferencebetweentheflowofwaterthroughrockorconcreteisoneofdegree.Thepermeabilityofsoilshasadecisiveeffectonthestabilityoffoundations,seepagelossthroughembankmentsofreservoirs,drainageofsubgrades,excavationofopencutsinwaterbearingsand,rateofflowofwaterintowellsandmanyothers.

HydraulicGradient

Whenwaterflowsthroughasaturatedsoilmassthereiscertainresistancefortheflowbecauseofthepresenceofsolidmatter.However,thelawsoffluidmechanicswhichareapplicablefortheflowoffluidsthroughpipesarealsoapplicabletoflowofwaterthroughsoils.AsperBernoulli's

equation,thetotalheadatanypointinwaterundersteadyflowconditionmaybeexpressedas

Totalhead=pressurehead+velocityhead+elevationhead

HydraulicGradient

Whenwaterflowsthroughasaturatedsoilmassthereiscertainresistancefortheflowbecauseofthepresenceofsolidmatter.Thelawsoffluidmechanicswhichareapplicablefortheflowoffluidthroughpipesarealsoapplicabletoflowofwaterthroughsoils.Thetotalheadatanypointinwaterundersteadyflowconditionmaybeexpressedas:

Totalhead=pressurehead+velocityhead+elevationhead

TheflowofwaterthroughasampleofsoiloflengthLandcross-sectionalareaAasshowninfigure1:

!" = %"+

!. =%.+

'"+ +

*

"

() 2-

*

/

'/+ +

() 2-

Figure

(1)flowofwaterthroughasoilsample

Forallpracticalpurposesthevelocityheadisasmallquantityandmaybeneglected.

Thewaterflowsfromthehighertotalheadtolowertotalhead.SothewaterwillflowfrompointBtoC.

!"−!.=(%"+23)-(%.+27)

45 45

Where,%"and%.=89:*;<=>?ℎ:;A,'"and'.=PressureHead.Thelossofheadperunitlengthofflowmaybeexpressesas:

==ℎ

C

Whereiisthehydraulicgradient.

Hydraulicgradient:

Thepotentialdropbetweentwoadjacentequipotentialsdividedbythedistancebetweenthemisknownasthehydraulicgradient.

DARCY'SLAW

Darcyin1856derivedanempiricalformulaforthebehaviorofflowthroughsaturatedsoils.Hefoundthatthequantityofwaterqpersecflowingthroughacross-sectionalareaofsoilunderhydraulicgradient/canbeexpressedbytheformula

q=kiA

orthevelocityofflowcanbewrittenas

!=#

$

Wherekistermedthehydraulicconductivity(orcoefficientofpermeability)withunitsofvelocity.Thecoefficientofpermeabilityisinverselyproportionaltotheviscosityofwaterwhichdecreaseswithincreasingtemperature;therefore,permeabilitymeasurementatlaboratorytemperaturesshouldbecorrectedtothevaluesatstandardtemperatureof200Cusingthefollowingequation.

Where%&':Coefficientofpermeabilityat200C

%(:CofficientofpermeabilityatLab.Temperture0C

)(Viscosityofwateratlab.Temperature

)&'Viscosityofwaterat200C

Table(1):Theof!"

!#$

atdifferenttemperature.

DISCHARGEANDSEEPAGEVELOCITIES:

FigurebelowshowsasoilsampleoflengthLandcross-sectionalareaA.Thesampleisplacedinacylindricalhorizontaltubebetweenscreens.ThetubeisconnectedtotworeservoirsR1andR2inwhichthewaterlevelsaremaintainedconstant.ThedifferenceinheadbetweenR1andR2ish.Thisdifferenceinheadisresponsiblefortheflowofwater.SinceDarcy'slawassumesnochangeinthevolumeofvoidsandthesoilissaturated,thequantityofflowpastsectionsAA,BBandCCshouldremainthesameforsteadyflowconditions.Wemayexpresstheequationofcontinuityasfollows

qaa=qbb=qcc

Ifthesoilberepresentedasdividedintosolidmatterandvoidspace,thentheareaavailableforthepassageofwaterisonlyAv.Ifvs.isthevelocityofflowinthevoids,andv,theaveragevelocityacrossthesectionthen,wehave

Where!"istheareaofthevoid,#$istheseepagevelocity,#istheapproachvelocity

A:isthecrosssectionalareaofthesample

#= !∗(

$ !"∗(

Wheren:istheporosityofthesoil

#=#)

#"

#=#

*

METHODSOFDETERMINATIONOFHYDRAULIC

CONDUCTIVITYOFSOILS(Coefficientofpermeability).

Stresseswithinthesoil

Stresseswithinthesoil:Typesofstresses:

Geostaticstress:SubSurfaceStressescausebymassofsoil

Verticalstress !"=∑#ℎ

HorizontalStress!"='(!"

Note:Geostaticstressesincreasedlineralywithdepth.2-Stressesduetosurfaceloading:

Infintlyloadedarea(filling)

Pointload(concentratedload)

Circularloadedarea.

Rectangularloadedarea.

Introduction:

Atapointwithinasoilmass,stresseswillbedevelopedasaresultofthesoillyingabovethepoint(Geostaticstress)andbyanystructureorotherloadingimposedintothatsoilmass.

1-

stressesdueGeostaticsoilmass

!"= #ℎ(Geostaticstress)

!)=*(!" , where*(:isthecoefficientofearthpressureatrest.

EFFECTIVESTRESSCONCEPT:Insaturatedsoils,thenormalstress(σ)atanypointwithinthesoilmassissharedbythesoilgrainsandthewaterheldwithinthepores.Thecomponentofthenormalstressactingonthesoilgrains,iscalledeffectivestressorintergranularstress,andisgenerallydenotedbyσ'.Theremainder,thenormalstressactingontheporewater,isknowsasporewaterpressureorneutralstress,andisdenotedbyu.Thus,thetotalstressatanypointwithinthesoilmasscanbewrittenas:

!="#́+u

This

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论