2024届河南省商丘市虞城县求实学校数学九年级第一学期期末学业水平测试试题含解析_第1页
2024届河南省商丘市虞城县求实学校数学九年级第一学期期末学业水平测试试题含解析_第2页
2024届河南省商丘市虞城县求实学校数学九年级第一学期期末学业水平测试试题含解析_第3页
2024届河南省商丘市虞城县求实学校数学九年级第一学期期末学业水平测试试题含解析_第4页
2024届河南省商丘市虞城县求实学校数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省商丘市虞城县求实学校数学九年级第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为()A.(,1) B.(1,) C.(1,2) D.(2,1)2.下列图形中,是中心对称图形的是()A. B. C. D.3.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.4.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.5.若关于x的一元二次方程有实数根,则实数k的取值范围为A.,且 B.,且C. D.6.下列图形中,主视图为①的是()A. B. C. D.7.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为,,则产量稳定,适合推广的品种为:()A.甲、乙均可 B.甲 C.乙 D.无法确定8.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.29.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里 B.10海里 C.20海里 D.30海里10.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是()A.1.5cm B.3cm C.6cm D.12cm二、填空题(每小题3分,共24分)11.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数,用表示这三个数中最小的数,例如,.请结合上述材料,求_____.12.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.13.在Rt△ABC中,∠C=90°,如果AB=6,,那么AC=_____.14.如图,是的中线,点在延长线上,交的延长线于点,若,则___________.15.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.16.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.17.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.18.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是,则黄球个数为__________.三、解答题(共66分)19.(10分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.20.(6分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD=CE.21.(6分)小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?22.(8分)若抛物线y=ax2+bx﹣3的对称轴为直线x=1,且该抛物线经过点(3,0).(1)求该抛物线对应的函数表达式.(2)当﹣2≤x≤2时,则函数值y的取值范围为.(3)若方程ax2+bx﹣3=n有实数根,则n的取值范围为.23.(8分)已知为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.24.(8分)如图,四边形、、都是正方形.求证:;求的度数.25.(10分)我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)26.(10分)(1)问题发现如图1,在中,,点为的中点,以为一边作正方形,点恰好与点重合,则线段与的数量关系为______________;(2)拓展探究在(1)的条件下,如果正方形绕点旋转,连接,线段与的数量关系有无变化?请仅就图2的情形进行说明;(3)问题解决.当正方形旋转到三点共线时,直接写出线段的长.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】作CH⊥x轴于H,如图,∵点A的坐标为(−2,),AB⊥x轴于点B,∴tan∠BAC=,∴∠A=,∵△ABO绕点B逆时针旋转60∘得到△CBD,∴BC=BA=,OB=2,∠CBH=,在Rt△CBH中,,,OH=BH−OB=3−2=1,∴故选:B.【题目点拨】根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.2、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【题目详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【题目点拨】本题考查的知识点是中心对称图形,掌握中心对称图形的定义是解此题的关键.3、A【解题分析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.4、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【题目详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【题目点拨】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.5、A【解题分析】∵原方程为一元二次方程,且有实数根,∴k-1≠0且△=62-4×(k-1)×3=48-12k≥0,解得k≤4,∴实数k的取值范围为k≤4,且k≠1,故选A.6、B【解题分析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.7、B【解题分析】试题分析:这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定,因此可知推广的品种为甲.答案为B考点:方差8、D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【题目详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是方差是故选D【题目点拨】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.9、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【题目详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC==,∴BC=20海里.故选C.考点:解直角三角形的应用-方向角问题.10、C【分析】根据150°的圆心角所对的弧长是5πcm,代入弧长公式即可得到此弧所在圆的半径.【题目详解】设此弧所在圆的半径为rcm,∵150°的圆心角所对的弧长是5πcm,∴,解得,r=6,故选:C.【题目点拨】本题考查弧长的计算,熟知弧长的计算公式是解题的关键.二、填空题(每小题3分,共24分)11、【分析】找出这三个特殊角的三角函数值中最小的即可.【题目详解】,,∵∴故答案为:.【题目点拨】本题考查了特殊角的三角函数值以及最小值等知识,解题的关键是熟特殊角的三角函数值.12、.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2,b最小是3,再根据二次函数的增减性和对称性判断出对称轴小于2.5,然后列出不等式求解即可:【题目详解】解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,b最小是3.∴根据二次函数的增减性和对称性知,的对称轴的左侧,∵,∴.∴实数m的取值范围是.考点:1.二次函数图象上点的坐标特征;2.二次函数的性质;3.三角形三边关系.13、2【解题分析】如图所示,在Rt△ABC中,∠C=90°,AB=6,cosA=,∴cosA=,则AC=AB=×6=2,故答案为2.14、5【分析】过D点作DH∥AE交EF于H点,证△BDH∽△BCE,△FDH∽△FAE,根据对应边成比例即可求解.【题目详解】过D点作DH∥AE交EF于H点,∴∠BDH=∠BCE,∠BHD=∠BEC,∴△BDH∽△BCE同理可证:△FDH∽△FAE∵AD是△ABC的中线∴BD=DC∴又∴∴∴故答案为:5【题目点拨】本题考查的是相似三角形,找到两队相似三角形之间的联系是关键.15、25【题目详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.16、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【题目详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【题目点拨】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.17、2.【解题分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【题目详解】圆锥的弧长,

圆锥的底面半径,

故答案为2.【题目点拨】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.18、24【分析】根据概率公式,求出白球和黄球总数,再减去白球的个数,即可求解.【题目详解】12÷=36(个),36-12=24(个),答:黄球个数为24个.故答案是:24.【题目点拨】本题主要考查概率公式,掌握概率公式及其变形公式,是解题的关键.三、解答题(共66分)19、(1)见解析;(2)AD=4.5.【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;

(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【题目详解】(1)证明:∵AB是半圆O的直径,

∴BD⊥AD,

∴∠DBA+∠A=90°,

∵∠DBC=∠A,

∴∠DBA+∠DBC=90°即AB⊥BC,

∴BC是半圆O的切线;(2)解:∵OC∥AD,

∴∠BEC=∠D=90°,

∵BD⊥AD,BD=6,

∴BE=DE=3,

∵∠DBC=∠A,

∴△BCE∽△BAD,,即;∴AD=4.5【题目点拨】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.20、见解析【解题分析】试题分析:作BF∥AC交EC于F,通过证明△FBC≌△DBC,得到CD=CF,根据三角形中位线定理得到CF=CE,等量代换得到答案.试题解析:证明:作BF∥AC交EC于F.∵BF∥AC,∴∠FBC=∠ACB.∵AB=AC,∴∠ABC=∠ACB,∴∠FBC=∠ABC.∵BF∥AC,BE=AB,∴BF=AC,CF=CE.∵CD是AB边上的中线,∴BD=AB,∴BF=BD.在△FBC和△DBC中,∵BF=BD,∠FBC=∠DBC,BC=BC,∴△FBC≌△DBC,∴CD=CF,∴CD=CE.点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线、灵活运用定理是解题的关键.21、(1)如图,BE为所作;见解析;(2)小亮(CD)的影长为3m.【分析】(1)根据光是沿直线传播的道理可知在小亮由B处沿BO所在的方向行走到达O处的过程中,连接PA并延长交直线BO于点E,则可得到小亮站在AB处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【题目详解】(1)如图,连接PA并延长交直线BO于点E,则线段BE即为小亮站在AB处的影子:(2)延长PC交OD于F,如图,则DF为小亮站在CD处的影子,AB=CD=1.6,OB=2.4,BE=1.2,OD=6,∵AB∥OP,∴△EBA∽△EOP,∴即解得OP=4.8,∵CD∥OP,∴△FCD∽△FPO,∴,即,解得FD=3答:小亮(CD)的影长为3m.【题目点拨】本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相似三角形,再根据相似三角形的性质解答.22、(1)y=x2﹣2x﹣3;(2)﹣1≤y≤5;(3)n≥﹣1.【分析】(1)由对称轴x=1可得b=-2a,再将点(3,0)代入抛物线解析式得到9a+3b-3=0,然后列二元一次方程组求出a、b即可;(2)用配方法可得到y=(x﹣1)2﹣1,则当x=1时,y有最小值-1,而当x=-2时,y=5,即可完成解答;(3)利用直线y=n与抛物线y=(x﹣1)2﹣1有交点的坐标就是方程ax2+bx-3=n有实数解,再根据根的判别式列不式、解不等式即可.【题目详解】解:(1)∵抛物线的对称轴为直线x=1,∴﹣=1,即b=﹣2a,∵抛物线经过点(3,0).∴9a+3b﹣3=0,把b=﹣2a代入得9a﹣6a﹣3=0,解得a=1,∴b=﹣2,∴抛物线解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣1,∴x=1时,y有最小值﹣1,当x=﹣2时,y=1+1﹣3=5,∴当﹣2≤x≤2时,则函数值y的取值范围为﹣1≤y≤5;(3)当直线y=n与抛物线y=(x﹣1)2﹣1有交点时,方程ax2+bx﹣3=n有实数根,∴n≥﹣1.【题目点拨】本题考查了二次函数的性质及其与二元一次方程的关系,把求二次函数图像与x轴的交点坐标问题转化为解关于x的一元二次方程是解答本题的关键.23、(1)(3﹣m,0);(2);(3)见解析【分析】(1)AO=AC−OC=m−3,用线段的长度表示点A的坐标;(2)是等腰直角三角形,因此也是等腰直角三角形,即可得到OD=OA,则D(0,m−3),又由P(1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,运用相似比求出FC,EC长的表达式,而AC=m,代入即可.【题目详解】解:(1)由B(3,m)可知OC=3,BC=m,∴AC=BC=m,OA=m﹣3,∴点A的坐标为(3﹣m,0)(2)∵∠ODA=∠OAD=45°∴OD=OA=m﹣3,则点D的坐标是(0,m﹣3)又抛物线的顶点为P(1,0),且过B、D两点,所以可设抛物线的解析式为:得:∴抛物线的解析式为:(3)证明:过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,则∵QM∥CE∴△PQM∽△PEC则∵QN∥FC∴△BQN∽△BFC则又∵AC=m=4∴即为定值8【题目点拨】本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.24、(1)见解析;(2)45°.【分析】(1)设正方形的边长为a,求出AC的长为a,再求出△ACF与△GCA中∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似;(2)根据相似三角形的对应角相等可得∠1=∠CAF,再根据三角形的一个外角等于和它不相邻的两个内角的和,∠2+∠CAF=∠ACB=45°,所以∠1+∠2=45°.【题目详解】设正方形的边长为,则,∴,又∵,∴;解:由得:,∴,∴.【题目点拨】本题主要考查相似三角形的判定,利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质以及三角形的外角性质,求出两三角形的对应边的比值相等是解题关键.25、米【分析】设AP=NP=x,在Rt△APM中可以求出MP=x,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论