上海市建平西学校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
上海市建平西学校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
上海市建平西学校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
上海市建平西学校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
上海市建平西学校2024届九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市建平西学校2024届九年级数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,点P在△ABC的边AC上,下列条件中不能判断△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.CB2=CP•CA2.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.3.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C.现有下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.44.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.5.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+26.如图,A,B,C,D是⊙O上的四个点,弦AC,BD交于点P.若∠A=∠C=40°,则∠BPC的度数为()A.100° B.80°C.50° D.40°7.在△ABC中,tanC=,cosA=,则∠B=()A.60° B.90° C.105° D.135°8.《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为()A.26寸 B.25寸 C.13寸 D.寸9.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.10.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有()A.①②③ B.②④⑥ C.②⑤⑥ D.②③⑤二、填空题(每小题3分,共24分)11.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是个红珠子,个白珠子和个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续次摸出的都是红珠子的情况下,第次摸出红珠子的概率是_____.12.如图,△ABC是⊙O的内接三角形,∠A=120°,过点C的圆的切线交BO于点P,则∠P的度数为_____.13.如图,在中,,,,则的长为__________.14.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.15.已知线段,点是线段的黄金分割点(),那么线段______.(结果保留根号)16.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于_________.17.如图,在矩形中对角线与相交于点,,垂足为点,且,则的长为___________.18.剪掉边长为2的正方形纸片4个直角,得到一个正八边形,则这个正八边形的边长为____________.三、解答题(共66分)19.(10分)解下列方程:(1);(2)20.(6分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.21.(6分)用适当的方法解下方程:22.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.23.(8分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.24.(8分)如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE(1)求证:△DBE是等腰三角形(2)求证:△COE∽△CAB25.(10分)在平面直角坐标系中,对于点和实数,给出如下定义:当时,以点为圆心,为半径的圆,称为点的倍相关圆.例如,在如图1中,点的1倍相关圆为以点为圆心,2为半径的圆.(1)在点中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________.(2)如图2,若是轴正半轴上的动点,点在第一象限内,且满足,判断直线与点的倍相关圆的位置关系,并证明.(3)如图3,已知点,反比例函数的图象经过点,直线与直线关于轴对称.①若点在直线上,则点的3倍相关圆的半径为________.②点在直线上,点的倍相关圆的半径为,若点在运动过程中,以点为圆心,为半径的圆与反比例函数的图象最多有两个公共点,直接写出的最大值.26.(10分)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?

参考答案一、选择题(每小题3分,共30分)1、D【分析】观察图形可得,与已经有一组角∠重合,根据三角形相似的判定定理,可以再找另一组对应角相等,或者∠的两条边对应成比例.注意答案中的、两项需要按照比例的基本性质转化为比例式再确定.【题目详解】解:项,∠=∠,可以判定;项,∠=∠,可以判定;项,,,可以判定;项,,,不能判定.【题目点拨】本题主要考查了相似三角形的判定定理,结合图形,按照定理找到条件是解答关键.2、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【题目详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;

∵Rt△ABC中,∠ACB=90°,CD⊥AB,

∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;

故选:A.【题目点拨】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.3、B【分析】由抛物线的开口方向,判断a与0的关系;由对称轴与y轴的位置关系,判断ab与0的关系;由抛物线与y轴的交点,判断c与0的关系,进而判断abc与0的关系,据此可判断①.由x=﹣2时,y=4a﹣2b+c,再结合图象x=﹣2时,y>0,即可得4a﹣2b+c与0的关系,据此可判断②.根据图象得对称轴为x=﹣>﹣1,即可得2a﹣b与0的关系,据此可判断③.由x=1时,y=a+b+c,再结合2a﹣b与0的关系,即可得3a+c与0的关系,据此可判断④.【题目详解】解:①∵抛物线的开口向下,∴a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;②如图,当x=﹣2时,y>0,即4a﹣2b+c>0,故②正确;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故③错误;④∵当x=1时,y=0,∴0=a+b+c,又∵2a﹣b<0,即b>2a,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,故④错误.综上所述,①②正确,即有2个结论正确.故选:B.【题目点拨】本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.4、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【题目详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【题目点拨】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.5、C【解题分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,然后利用顶点式写出新抛物线解析式即可.【题目详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为-3,-2,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【题目点拨】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.6、B【分析】根据同一个圆中,同弧所对的圆周角相等,可知,结合题意求的度数,再根据三角形的一个外角等于其不相邻两个内角和解题即可.【题目详解】故选B【题目点拨】本题考查圆的综合,其中涉及圆周角定理、三角形外角性质,是常见考点,熟练掌握相关知识是解题关键.7、C【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=45°,进而得出答案.【题目详解】解:∵tanC=,cosA=,

∴∠C=30°,∠A=45°,

∴∠B=180°-∠C-∠A=105°.

故选:C.【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.8、A【分析】取圆心O,连接OP,过O作OH⊥PQ于H,根据垂径定理求出PH的长,再根据勾股定理求出OP的值,即可求出直径.【题目详解】解:取圆心O,连接OP,过O作OH⊥PQ于H,由题意可知MH=1寸,PQ=10寸,

∴PH=5寸,

在Rt△OPH中,OP2=OH2+PH2,设半径为x,

则x2=(x-1)2+52,

解得:x=13,

故圆的直径为26寸,

故选:A.【题目点拨】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.9、C【解题分析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===,故选C.点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.10、D【分析】①只需根据抛物线的开口、对称轴的位置、与y轴的交点位置就可得到a、b、c的符号,从而得到abc的符号;②只需利用抛物线对称轴方程x==1就可得到2a与b的关系;③只需结合图象就可得到当x=1时y=a+b+c最小,从而解决问题;④根据抛物线x=图象在x轴上方,即可得到x=所对应的函数值的符号;⑤由可得,然后利用抛物线的对称性即可解决问题;⑥根据函数图像,即可解决问题.【题目详解】解:①由抛物线的开口向下可得a>0,

由对称轴在y轴的右边可得x=>0,从而有b<0,

由抛物线与y轴的交点在y轴的负半轴上可得c<0,

则abc>0,故①错误;

②由对称轴方程x==1得b=-2a,即2a+b=0,故②正确;

③由图可知,当x=1时,y=a+b+c最小,则对于任意实数m(),都满足,即,故③正确;

④由图像可知,x=所对应的函数值为正,

∴x=时,有a-b+c>0,故④错误;

⑤若,且x1≠x2,

则,

∴抛物线上的点(x1,y1)与(x2,y2)关于抛物线的对称轴对称,

∴1-x1=x2-1,即x1+x2=2,故⑤正确.⑥由图可知,当时,函数值有正数,也有负数,故⑥错误;∴正确的有②③⑤;故选:D.【题目点拨】本题主要考查了抛物线的性质(开口、对称轴、对称性、最值性等)、抛物线上点的坐标特征等知识,运用数形结合的思想即可解决问题.二、填空题(每小题3分,共24分)11、.【分析】每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,可以直接应用求概率的公式.【题目详解】解:因为每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,所以第次摸出红珠子的概率是.故答案是:.【题目点拨】本题考查概率的意义,解题的关键是熟练掌握概率公式.12、30°【分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC=180°−∠A=60°,由等腰三角形的性质得出∠OCD=∠ODC=60°,求出∠DOC=60°,由直角三角形的性质即可得出结果.【题目详解】如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=120°,∴∠ODC=180°−∠A=60°,∵OC=OD,∴∠OCD=∠ODC=60°,∴∠DOC=180°−2×60°=60°,∴∠P=90°−∠DOC=30°;故填:30°.【题目点拨】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.13、6【分析】根据相似三角形的性质即可得出答案.【题目详解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案为6.【题目点拨】本题考查的是相似三角形,比较简单,容易把三角形的相似比看成,这一点尤其需要注意.14、(-1010,10102)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【题目详解】∵A点坐标为(1,1),

∴直线OA为y=x,A1(-1,1),

∵A1A2∥OA,

∴直线A1A2为y=x+2,

解得或,

∴A2(2,4),

∴A3(-2,4),

∵A3A4∥OA,

∴直线A3A4为y=x+6,

解得或,

∴A4(3,9),

∴A5(-3,9)

…,

∴A2019(-1010,10102),

故答案为(-1010,10102).【题目点拨】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.15、【分析】根据黄金比值为计算即可.【题目详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【题目点拨】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.16、【解题分析】分析:利用概率公式:一般地,如果在一次试验中,有n种可能得结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,即要求解.详解:∵骰子的六个面上分别刻有1到6的点数,点数为2的倍数的有3个,分别为2、4、6;∴掷得朝上一面的点数为2的倍数的概率为:.故答案为:.点睛:本题考查了概率公式的知识,解题的关键是利用概率=所求情况数与总数之比进行求解.17、【分析】由矩形的性质可得OC=OD,于是设DE=x,则OE=2x,OD=OC=3x,然后在Rt△OCE中,根据勾股定理即可得到关于x的方程,解方程即可求出x的值,进而可得CD的长,易证△ADC∽△CED,然后利用相似三角形的性质即可求出结果.【题目详解】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,则OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=,即DE=,∴,∵∠ADE+∠CDE=90°,∠ECD+∠CDE=90°,∴∠ADE=∠ECD,又∵∠ADC=∠CED=90°,∴△ADC∽△CED,∴,即,解得:.故答案为:.【题目点拨】本题考查了矩形的性质、勾股定理和相似三角形的判定与性质,属于常考题型,熟练掌握上述基本知识是解题的关键.18、【分析】设腰长为x,则正八边形边长2-2x,根据勾股定理列方程,解方程即可求出正八边形的边.【题目详解】割掉的四个直角三角形都是等腰直角三角形,设腰长为x,则正八边形边长2-2x,,(舍),,.故答案为:.【题目点拨】本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.三、解答题(共66分)19、(1)(2).【分析】(1)利用因式分解法解方程得出答案;(2)利用因式分解法解方程得出答案;【题目详解】(1)解得:(2)解得:【题目点拨】本题考查解一元二次方程-因式分解法,熟练掌握计算法则是解题关键.20、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【题目详解】解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).答:到2020年底,全省5G基站的数量是6万座.(2)设年平均增长率为,由题意可得:,解得:,(不符合,舍去)答:2020年底到2022年底,全省5G基站数量的年平均增长率为.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、x=3或1【分析】移项,因式分解得到,再求解.【题目详解】解:,∴,∴,∴,∴x-3=0或x-1=0,∴x=3或1.【题目点拨】本题考查了一元二次方程,解题的关键是根据方程的形式选择因式分解法.22、(1)4米;(2)(14+4)米.【分析】(1)作EH⊥OB于H,由四边形MOHE是矩形,解Rt求得EH即可;(2)设ON=OD=m,作AK⊥ON于K,则四边形AKOB是矩形,,OK=AB=2,想办法构建方程求得m即可.【题目详解】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,在Rt中,∵∠EHF=90°,EF=4,∠EFH=45°,∴EH=FH=OM=米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,如图,AK=BO,OK=AB=2∵AB∥OD,∴,∴,∴OC=,∴,在Rt△AKN中,∵∠1=60°,∴AK,∴,∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【题目点拨】本题考查了解直角三角形的应用,轴对称的性质,解题的关键是添加常用辅助线,构造直角三角形解决问题,学会用参数解决几何问题.23、(1)y=x2-2x-1.(2)M(1,-2).(1P(1,-4).【解题分析】分析:(1)根据抛物线的对称轴可求出B点的坐标,进而可用待定系数法求出抛物线的解析式;(2)由于A、B关于抛物线的对称轴直线对称,若连接BC,那么BC与直线x=1的交点即为所求的点M;可先求出直线BC的解析式,联立抛物线对称轴方程即可求得M点的坐标;(1)若∠PCB=90°,根据△BCO为等腰直角三角形,可推出△CDP为等腰直角三角形,根据线段长度求P点坐标.详解:(1)∵抛物线的对称轴为x=1,且A(﹣1,0),∴B(1,0);可设抛物线的解析式为y=a(x+1)(x﹣1),由于抛物线经过C(0,﹣1),则有:a(0+1)(0﹣1)=﹣1,a=1,∴y=(x+1)(x﹣1)=x2﹣2x﹣1;(2)由于A、B关于抛物线的对称轴直线x=1对称,那么M点为直线BC与x=1的交点;由于直线BC经过C(0,﹣1),可设其解析式为y=kx﹣1,则有:1k﹣1=0,k=1;∴直线BC的解析式为y=x﹣1;当x=1时,y=x﹣1=﹣2,即M(1,﹣2);(1)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D;∵OB=OC=1,∴CD=DP=1,OD=OC+CD=4,∴P(1,﹣4).点睛:本题考查了二次函数解析式的确定、轴对称的性质以及特殊三角形的性质等知识,难度适中.24、(1)见解析;(2)见解析【分析】(1)连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由∠ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;(2)证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论