版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省安岳县2024届数学九年级第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,若点P在反比例函数y=(k≠0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,若矩形PMON的面积为6,则k的值是()A.-3 B.3 C.-6 D.62.(2017广东省卷)如图,在同一平面直角坐标系中,直线与双曲线相交于两点,已知点的坐标为,则点的坐标为()A. B. C. D.3.用配方法将二次函数化为的形式为()A. B.C. D.4.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.∶3 B.∶1 C.∶ D.1∶5.如图,在△中,,两点分别在边,上,∥.若,则为()A. B. C. D.6.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于A.100° B.80° C.50° D.40°7.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°9.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣310.如果,那么锐角A的度数是()A.60° B.45° C.30° D.20°11.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大12.一元二次方程的常数项是()A.﹣4 B.﹣3 C.1 D.2二、填空题(每题4分,共24分)13.已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP的长为_____.14.二次函数的解析式为,顶点坐标是__________.15.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.16.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.17.如图,在△ABC中,AB=AC=3,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于点M和点N,则线段MN的长为_____.18.已知,是方程的两个实根,则______.三、解答题(共78分)19.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长.20.(8分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.21.(8分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.22.(10分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).23.(10分)如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.24.(10分)在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为1.(1)点在函数的图象上,点的“坐标和”是;(2)求直线的“智慧数”;(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.25.(12分)如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°(2)若NC=3,BC=,求DM的长26.如图,,以为直径作,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)若,,求的半径.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】设PN=a,PM=b,则ab=6,∵P点在第二象限,∴P(-a,b),代入y=中,得k=-ab=-6,故选C.2、A【分析】过原点的直线与反比例函数图象的交点关于原点成中心对称,由此可得B的坐标.【题目详解】与相交于A,B两点∴A与B关于原点成中心对称∵∴故选择:A.【题目点拨】熟知反比例函数的对称性是解题的关键.3、B【分析】加上一次项系数一半的平方凑成完全平方式,将一般式转化为顶点式即可.【题目详解】故选:B.【题目点拨】本题考查二次函数一般式到顶点式的转化,熟练掌握配方法是解题的关键.4、A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【题目详解】解:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,内接正方形和内接正六边形的周长比为:4R:6R=∶1.故选:A.【题目点拨】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.5、C【分析】先证明相似,然后再根据相似的性质求解即可.【题目详解】∵∥∴∵∴=故答案为:C.【题目点拨】本题考查了三角形相似的性质,即相似三角形的面积之比为相似比的平方.6、D【解题分析】试题分析:∵∠ACB和∠AOB是⊙O中同弧所对的圆周角和圆心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故选D.7、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【题目详解】解:====∵∴∴代数式的最小值等于故选C.【题目点拨】此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.8、B【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【题目详解】连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°-∠BOC=40°.故选B.9、D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【题目详解】A.2x+y=1是二元一次方程,故不正确;B.x2+1=2xy是二元二次方程,故不正确;C.x2+=3是分式方程,故不正确;D.x2=2x-3是一元二次方程,故正确;故选:D10、A【分析】根据特殊角的三角函数值即可求解.【题目详解】解:∵,∴锐角A的度数是60°,故选:A.【题目点拨】本题考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.11、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【题目详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【题目点拨】此题考查反比例函数的性质,熟记性质并运用解题是关键.12、A【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)中a、b、c分别是二次项系数、一次项系数、常数项.【题目详解】解:一元二次方程的常数项是﹣4,故选A.【题目点拨】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a、b、c分别叫二次项系数,一次项系数,常数项.二、填空题(每题4分,共24分)13、(6﹣2)cm.【解题分析】根据黄金分割点的定义和AP<BP得出PB=AB,代入数据即可得出BP的长度.【题目详解】解:由于P为线段AB=4的黄金分割点,且AP<BP,则BP=×4=(2
-2)cm.∴AP=4-BP=故答案为:()cm.【点评】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的
.14、【分析】由已知和抛物线的顶点式,直接判断顶点坐标.【题目详解】解:∵二次函数的解析式为:,∴二次函数图象的顶点坐标为:(-1,3).故答案为:(-1,3).【题目点拨】本题考查了抛物线的顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x-h)2+k,顶点坐标为(h,k).15、【解题分析】试题分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考点:旋转的性质.16、或或或【分析】根据圆与直线的位置关系可知,当⊙与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【题目详解】∵⊙的半径为1,∴当⊙与轴相切时,P点的纵坐标为1或-1.当时,,解得,∴此时P的坐标为或;当时,,解得,∴此时P的坐标为或;故答案为:或或或.【题目点拨】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键.17、.【分析】根据三角形的面积公式求出BC边上的高=3,根据△ADE∽△ABC,求出正方形DEFG的边长为2,根据等于高之比即可求出MN.【题目详解】解:作AQ⊥BC于点Q.∵AB=AC=3,∠BAC=90°,∴BC=AB=6,∵AQ⊥BC,∴BQ=QC,∴BC边上的高AQ=BC=3,∵DE=DG=GF=EF=BG=CF,∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=AD=2,∵△AMN∽△AGF,DE边上的高为1,∴MN:GF=1:3,∴MN:2=1:3,∴MN=.故答案为.【题目点拨】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大,作辅助线AQ⊥BC是解题的关键.18、27【分析】根据根与系数的关系,由x12+x22=(x1+x2)2−2x1x2,即可得到答案.【题目详解】∵x1,x2是方程
x2−5x−1=0
的两根,∴x1+x2=5,x1∙x2=−1,∴x12+x22=(x1+x2)2−2x1x2=52-2×(-1)=27;故答案为27.【题目点拨】本题考查了一元二次方程的根与系数的关系,解题的关键是熟练掌握根与系数的关系,并正确进行化简计算.三、解答题(共78分)19、4cm【解题分析】试题分析:想求得FC,EF长,那么就需求出BF的长,利用直角三角形ABF,使用勾股定理即可求得BF长.试题解析:折叠长方形一边AD,点D落在BC边的点F处,所以AF=AD=BC=10厘米(2分)在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2∴82+BF2=102∴BF=6(厘米)∴FC=10-6=4(厘米).答:FC长为4厘米.考点:1.翻折变换(折叠问题);2.矩形的性质.20、(1)AE=;(2)证明见解析.【分析】(1)根据题意可得:AB=AC=6,可得AO=3,根据勾股定理可求BO的值,根据S△ABO=AB×BO=BO×AE,可求AE的长度.(2)延长AE到P,使AP=BF,可证△ABF≌△APC,可得AF=PC.则GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可证△AGH≌△PHC,结论可得.【题目详解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四边形ABCD是平行四边形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如图:延长AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC【题目点拨】本题考查了平行四边形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形是解决问题的关键.21、(1)x=2.5或x=2;(2)x=.【分析】(1)利用因式分解法求解可得;
(2)利用公式法求解可得.【题目详解】解:(1)∵x(2x﹣5)﹣2(2x﹣5)=2,∴(2x﹣5)(x﹣2)=2,则2x﹣5=2或x﹣2=2,解得x=2.5或x=2;(2)∵a=1,b=5,c=﹣4,∴△=52﹣4×1×(﹣4)=41>2,则x=.【题目点拨】本题考查因式分解法、公式法解一元二次方程,解题的关键是掌握因式分解法、公式法解一元二次方程.22、(1)见解析,(2)见解析,(3)π【解题分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A′,B′绕点C顺时针旋转90°得到的对应点,再首尾顺次连接可得;(3)根据弧长公式计算可得.【题目详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为π.【题目点拨】本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.23、(1)1;(2)①y=﹣x2+3x(0<x<12);②x=6时,y有最大值为9;(3)S=【分析】(1)由EF∥BC,可得,由此即可解决问题;(2)①先根据点E为AB上一点得出自变量x的取值范围,根据30度的直角三角形的性质求出EF和AF的长,在在Rt△ACB中,根据三角函数求出AC的长,计算FC的长,利用矩形的面积公式可求得S的函数关系式;②把二次函数的关系式配方可以得结论;(3)分两种情形分别求解即可解决问题.【题目详解】解:(1)在Rt△ABC中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四边形EFPQ是矩形,∴EF∥BC,∴=,∴=,∴EF=1.(2)①∵AB=12,AE=x,点E与点A、点B均不重合,∴0<x<12,∵四边形CDEF是矩形,∴EF∥BC,∠CFE=90°,∴∠AFE=90°,在Rt△AFE中,∠A=30°,∴EF=x,AF=cos30°•AE=x,在Rt△ACB中,AB=12,∴cos30°=,∴AC=12×=6,∴FC=AC﹣AF=6﹣x,∴y=FC•EF=x(6﹣x)=﹣x2+3x(0<x<12);②y=x(12﹣x)=﹣(x﹣6)2+9,当x=6时,S有最大值为9;(3)①当0≤t<3时,如图1中,重叠部分是五边形MFPQN,S=S矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.②当3≤t≤6时,重叠部分是△PBN,S=(6﹣t)2,综上所述,S=【题目点拨】本题考查二次函数与三角形综合的知识,难度较大,需综合运用所学知识求解.24、(1)4;(2)直线“智慧数”等于;(3)抛物线的“智慧数”是;(4)抛物线的解析式为或【分析】(1)先求出点N的坐标,然后根据“坐标和”的定义计算即可;(2)求出,然后根据一次函数的增减性和“智慧数”的定义计算即可;(3)先求出抛物线的顶点坐标,即可列出关于b和c的等式,然后求出,然后利用二次函数求出y+x的最小值即可得出结论;(4)根据题意可设二次函数为,坐标和为,即可求出与x的二次函数关系式,求出与x的二次函数图象的对称轴,先根据已知条件求出m的取值范围,然后根据与对称轴的相对位置分类讨论,分别求出的最小值列出方程即可求出结论.【题目详解】解:(1)将y=2代入到解得x=2∴点N的坐标为(2,2)∴点的“坐标和”是2+2=4故答案为:4;(2),∵,∴当时,最小,即直线,“智慧数”等于(3)抛物线的顶点坐标为,∴,即∵,∴的最小值是∴抛物线的“智慧数”是;(4)∵二次函数的图象的顶点在直线上,∴设二次函数为,坐标和为对称轴∵∴①当时,即时,“坐标和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国内遮荫系统行业投资前景及策略咨询研究报告
- 2024至2030年中国高档平磨套柄水泵钳行业投资前景及策略咨询研究报告
- 2024至2030年中国尼龙斜纹面料行业投资前景及策略咨询研究报告
- 2024至2030年中国伏虫隆行业投资前景及策略咨询研究报告
- 2024年中国环氧导静电防腐底漆市场调查研究报告
- 2024至2030年卧式保温加热储罐项目投资价值分析报告
- 2024年无机耐火槽盒项目可行性研究报告
- 手机维修人员劳动合同三篇
- 银行建设项目招标合同三篇
- 高速公路隧道施工招标合同三篇
- 《电站锅炉受热面电弧喷涂施工及验收规范》
- 中国世界遗产欣赏智慧树知到期末考试答案章节答案2024年浙江农林大学
- MOOC 实验室安全学-武汉理工大学 中国大学慕课答案
- 学校危险化学品安全教育
- 屋顶绿化养护管理规范
- MOOC 计量经济学-西南财经大学 中国大学慕课答案
- 2024年中储粮质检中心有限公司招聘笔试参考题库附带答案详解
- 私募基金纠纷案件裁判指引
- 阴道流血症状护理
- 园林植物器官的识别-园林植物生殖器官的识别
- 炼钢厂安全生产教育培训课件
评论
0/150
提交评论