版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2017年云南省楚雄州高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.若集合A={y|y=2x+2},B={x|﹣x2+x+2≥0},则()A.A⊆B B.A∪B=R C.A∩B={2} D.A∩B=∅2.已知复数z满足zi=2i+x(x∈R),若z的虚部为2,则|z|=()A.2 B.2 C. D.3.若等差数列{an}的公差d≠0,前n项和为Sn,若∀n∈N*,都有Sn≤S10,则()A.∀n∈N*,都有an<an﹣1 B.a9•a10>0C.S2>S17 D.S19≥04.“牟合方盖"是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是()A. B. C. D.5.若某程序框图如图所示,则该程序运行后输出的值是()A.4 B.5 C.6 D.76.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0。84,则P(2<x<4)=()A.0。84 B.0。68 C.0.32 D.0。167.使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3 B.4 C.5 D.68.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1.若|AB|=|A1B|,则直线AB的斜率为()A.±3 B.±2 C.±2 D.±9.已知球O是某几何体的外接球,而该几何体是由一个侧棱长为2的正四棱锥S﹣ABCD与一个高为6的正四棱柱ABCD﹣A1B1C1D1拼接而成,则球O的表面积为()A. B.64π C.100π D.10.已知函数f(x)=|lnx|﹣1,g(x)=﹣x2+2x+3,用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2 C.3 D.411.已知曲线f(x)=ex﹣与直线y=kx有且仅有一个公共点,则实数k的最大值是()A.﹣1 B.0 C.1 D.212.公差不为0的等差数列{an}的部分项an1,a,a,…构成等比数列{a},且n2=2,n3=6,n4=22,则下列项中是数列{a}中的项是()A.a46 B.a89 C.a342 D.a387二、填空题(本大题共四小题,每小题5分)13.已知向量=(x﹣z,1),=(2,y+z),且,若变量x,y满足约束条件,则z的最大值为.14.抛物线y2=﹣12x的准线与双曲线﹣=1的两条渐近线所围成的三角形的面积等于.15.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数的解析式为.16.在等比数列{an}中,a3a7=8,a4+a6=6,则a2+a8=.三、解答题(本大题满分60分,解答应写出文字说明,证明过程或演算步骤)17.(12分)如图,在△ABC中,∠B=,AC=2.(1)若∠BAC=θ,求AB和BC的长.(结果用θ表示);(2)当AB+BC=6时,试判断△ABC的形状.18.(12分)某单位利用周末时间组织员工进行一次“健康之路,携手共筑”徒步走健身活动,有n人参加,现将所有参加人员按年龄情况分为[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.(1)求n的值并补全频率分布直方图;(2)已知[30,40)岁年龄段中采用分层抽样的方法抽取5人作为活动的组织者,其中选取3人作为领队,记选取的3名领队中年龄在[30,35)岁的人数为ξ,求ξ的分布列和数学期望E(ξ).19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求二面角B﹣AC﹣A1的余弦值.20.(12分)已知椭圆C:=1(a>b>0)的离心率为,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x﹣y+6=0相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线y=k(x﹣2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使2+•为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(Ⅰ)当a=﹣1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.请考生在第22、23两题中选定一题作答,多答按所答第一题评分.作答时使用2B铅笔在答题卡上把所选题目的题号涂黑[选修4—4:坐标系与参数方程]22.(10分)在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.[选修4-5:不等式选讲]23.设函数f(x)=|x+1|+|2x﹣1|的最小值为a.(1)求a的值;(2)已知m,n>0,m+n=a,求的最小值.
2017年云南省楚雄州高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.若集合A={y|y=2x+2},B={x|﹣x2+x+2≥0},则()A.A⊆B B.A∪B=R C.A∩B={2} D.A∩B=∅【考点】18:集合的包含关系判断及应用.【分析】y=2x+2>2,可得集合A=(2,+∞).由﹣x2+x+2≥0,化为x2﹣x﹣2≤0,解出可得B=[﹣1,2].再利用集合的运算性质即可得出.【解答】解:y=2x+2>2,∴集合A={y|y=2x+2}=(2,+∞).由﹣x2+x+2≥0,化为x2﹣x﹣2≤0,解得﹣1≤x≤2.∴B={x|﹣x2+x+2≥0}=[﹣1,2].∴A∩B=∅,故选:D.【点评】本题考查了集合的运算性质、不等式的解法、函数的性质,考查了推理能力与计算能力,属于中档题.2.已知复数z满足zi=2i+x(x∈R),若z的虚部为2,则|z|=()A.2 B.2 C. D.【考点】A8:复数求模.【分析】利用复数的代数形式混合运算化简复数,然后求解复数的模.【解答】解:复数z满足zi=2i+x(x∈R),可得z==2﹣xi.若z的虚部为2,可得x=﹣2.z=2﹣2i.∴|z|=2故选:B.【点评】本题考查复数的代数形式混合运算,复数的模以及复数的基本概念的应用,考查计算能力.3.若等差数列{an}的公差d≠0,前n项和为Sn,若∀n∈N*,都有Sn≤S10,则()A.∀n∈N*,都有an<an﹣1 B.a9•a10>0C.S2>S17 D.S19≥0【考点】85:等差数列的前n项和;82:数列的函数特性.【分析】由∀n∈N*,都有Sn≤S10,a10≥0,a11≤0,再根据等差数列的性质即可判断.【解答】解:∵∀n∈N*,都有Sn≤S10,∴a10≥0,a11≤0,∴a9+a11≥0,∴S2≥S17,S19≥0,故选:D.【点评】本题注意等差数列的性以及等差数列的前n项和公式,是基础题,4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是()A. B. C. D.【考点】L7:简单空间图形的三视图.【分析】相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).根据三视图看到方向,可以确定三个识图的形状,判断答案.【解答】解:∵相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).∴其正视图和侧视图是一个圆,∵俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上∴俯视图是有2条对角线且为实线的正方形,故选:B【点评】本题考查了几何体的三视图,属于基础题.5.若某程序框图如图所示,则该程序运行后输出的值是()A.4 B.5 C.6 D.7【考点】EF:程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.【解答】解:模拟程序的运行,可得n=10,i=1执行循环体,不满足条件n是奇数,n=5,i=2不满足条件n=1,执行循环体,满足条件n是奇数,n=16,i=3不满足条件n=1,执行循环体,不满足条件n是奇数,n=8,i=4不满足条件n=1,执行循环体,不满足条件n是奇数,n=4,i=5不满足条件n=1,执行循环体,不满足条件n是奇数,n=2,i=6不满足条件n=1,执行循环体,不满足条件n是奇数,n=1,i=7满足条件n=1,退出循环,输出i的值为7.故选:D.【点评】本题主要考查了循环结构的程序框图的应用,注意循环的变量的计算,考查计算能力,属于基础题.6.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0。84,则P(2<x<4)=()A.0。84 B.0。68 C.0。32 D.0.16【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(x≤4)=0.84的概率可求出P(x<2)=P(x>4)=0.16,即可求出P(2<x<4).【解答】解:∵P(x≤4)=0.84,∴P(x>4)=1﹣0。84=0。16∴P(x<2)=P(x>4)=0.16,∴P(2<x<4)=P(x≤4)﹣P(x<2)=0。84﹣0。16=0。68故选B.【点评】本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.7.使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3 B.4 C.5 D.6【考点】DC:二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出n与r的关系值,即可求得n的最小值.【解答】解:(x2+)n(n∈N)展开式的通项公式为Tr+1=••x2n﹣5r,令2n﹣5r=0,求得2n=5r,可得含有常数项的n的最小值是5,故选:C.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.8.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1.若|AB|=|A1B|,则直线AB的斜率为()A.±3 B.±2 C.±2 D.±【考点】K8:抛物线的简单性质.【分析】设A,B到准线的距离分别为2a,a,由抛物线的定义可得|AB|=3a,利用锐角三角函数的定义即可得出直线AB的斜率.【解答】解:设A在第一象限,直线AB的倾斜角为α.过B作准线的垂线BB′,作AA′的垂线BC,∵|AB|=|A1B|,∴C是AA′的中点.设|BB′|=a,则|AA′|=2a,∴|AB|=|AA′|+|BB′|=3a.∴cosα=cos∠BAC==,∴tanα=2,由抛物线的对称性可知当A在第四象限时,tanα=﹣2.∴直线AB的斜率为±2.故选:B.【点评】本题考查抛物线的定义,考查直线的斜率的计算,考查学生的计算能力,属于中档题.9.已知球O是某几何体的外接球,而该几何体是由一个侧棱长为2的正四棱锥S﹣ABCD与一个高为6的正四棱柱ABCD﹣A1B1C1D1拼接而成,则球O的表面积为()A. B.64π C.100π D.【考点】LG:球的体积和表面积.【分析】设球的半径为R,AB=2x,S到平面ABCD的距离为+3=R,由勾股定理可得R2=32+2x2,由此求出R,即可求出球的表面积.【解答】解:设球的半径为R,AB=2x,则球心到平面A1B1C1D1的距离为3S到平面ABCD的距离为+3=R,由勾股定理可得R2=32+2x2,∴R=5,x=2∴球的表面积为4πR2=100π.故选:C.【点评】本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.10.已知函数f(x)=|lnx|﹣1,g(x)=﹣x2+2x+3,用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2 C.3 D.4【考点】54:根的存在性及根的个数判断.【分析】根据min{m,n}的定义,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数f(x)和g(x)的图象如图,两个图象的下面部分图象,由g(x)=﹣x2+2x+3=0,得x=﹣1,或x=3,由f(x)=|lnx|﹣1=0,得x=e或x=,∵g(e)>0,∴当x>0时,函数h(x)的零点个数为3个,故选:C.【点评】本题主要考查函数零点个数的判断,利用数形结合是解决本题的关键.注意函数定义域的作用.11.已知曲线f(x)=ex﹣与直线y=kx有且仅有一个公共点,则实数k的最大值是()A.﹣1 B.0 C.1 D.2【考点】6H:利用导数研究曲线上某点切线方程.【分析】由题意可得曲线和直线均过原点,判断f(x)为奇函数且在R上递增,当直线y=kx与曲线相切,切点为(0,0),求得切线的斜率为2,讨论k的变化,即可得到符合题意的k的最大值.【解答】解:由曲线f(x)=ex﹣与直线y=kx均过原点(0,0),由f(﹣x)=e﹣x﹣ex=﹣(ex﹣e﹣x)=﹣f(x),可得f(x)为奇函数,图象关于原点对称,且f′(x)=ex+e﹣x>0,f(x)在R上递增,由题意可得f(x)与直线y=kx有且仅有交点为(0,0),当直线y=kx与曲线相切,切点为(0,0),切线的斜率为k=e0+e0=2,当k<0时,显然只有一个交点(0,0),当0≤k≤2时,显然只有一个交点(0,0),当k>2时,有3个交点.则符合条件的k的最大值为2.故选:D.【点评】本题考查导数的运用:求切线的斜率,考查函数方程的转化思想以及数形结合的思想方法,属于中档题.12.公差不为0的等差数列{an}的部分项an1,a,a,…构成等比数列{a},且n2=2,n3=6,n4=22,则下列项中是数列{a}中的项是()A.a46 B.a89 C.a342 D.a387【考点】84:等差数列的通项公式.【分析】由题意a2,a6,a22成等比数列,求出等比数列的公比q,从而写出等比数列{akn}的通项公式,再验证选项是否正确即可.【解答】解:等差数列{an}中,a2,a6,a22构成等比数列,∴(a1+5d)2=(a1+d)(a1+21d),且d≠0,解得d=3a1,∴等比数列的公比为q===4;又等差数列{an}的通项公式为an=a1+(n﹣1)×3a1=3a1n﹣2a1=(3n﹣2)a1,∴等比数列{akn}的通项公式为akn=a1×4n﹣1,且a46=a1+45d=136a1,a89=a1+88d=265a1,a342=a1+341d=1024a1=a1•45,a387=a1+386d=1159a1,∴a342是数列{a}中的项.故选:C.【点评】本题考查了数列中某一项的判断问题,解题时要认真审题,注意等差数列和等比数列性质的合理运用.二、填空题(本大题共四小题,每小题5分)13.已知向量=(x﹣z,1),=(2,y+z),且,若变量x,y满足约束条件,则z的最大值为3.【考点】7C:简单线性规划;9R:平面向量数量积的运算.【分析】画出不等式组表示的平面区域;将目标函数变形,画出其相应的图象;结合图,得到直线平移至(1,1)时,纵截距最大,z最大,求出z的最大值.【解答】解:由得(x﹣z,1)(2,y+z)=0,即z=2x+y,画出不等式组的可行域,如右图,目标函数变为:z=2x+y,作出y=﹣2x的图象,并平移,由图可知,直线过B点时,在y轴上的截距最大,此时z的值最大:求出B点坐标(1,1)Zmax=2×1+1=3,故答案为:3.【点评】本题考查画不等式组表示的平面区域、平面向量数量积的运算,考查数形结合求函数的最值.14.抛物线y2=﹣12x的准线与双曲线﹣=1的两条渐近线所围成的三角形的面积等于.【考点】KC:双曲线的简单性质.【分析】根据抛物线的方程算出其准线方程为x=3,由双曲线的方程算出渐近线方程为y=±x,从而得到它们的交点M、N的坐标,再利用三角形的面积公式算出△OMN的面积,可得答案.【解答】解:∵抛物线方程为y2=﹣12x,∴抛物线的焦点为F(﹣3,0),准线为x=3.又∵双曲线﹣=1的渐近线方程为y=±x.∵直线x=3与直线y=±x相交于点M(3,),N(3,﹣),∴三条直线围成的三角形为△MON,以MN为底边、O到MN的距离为高,可得其面积为S=×|MN|×3=×[﹣(﹣)]×3=3.故答案为:.【点评】本题给出抛物线的准线与双曲线的两条渐近线围成的三角形,求三角形的面积.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.15.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数的解析式为y=sin(2x+).【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数的图象,求出函数的周期,进而求出ω和φ即可得到结论.【解答】解:由图象得A=,=﹣=,则周期T=π=,则ω=2,则y=sin(2x+φ),当x=时,y=﹣,则sin(2×+φ)=﹣,即sin(π+φ)=﹣1即π+φ=﹣+2kπ,即φ=﹣+2kπ,k∈Z,∵|φ|<,∴当k=1时,φ=﹣+2π=,则函数的解析式为y=sin(2x+),故答案为:y=sin(2x+)【点评】本题主要考查三角函数解析式的求解,根据三角函数图象求出A,ω和φ的值是解决本题的关键.16.在等比数列{an}中,a3a7=8,a4+a6=6,则a2+a8=9.【考点】88:等比数列的通项公式.【分析】设等比数列{an}的公比为q,由a3a7=8=a4a6,a4+a6=6,解得,.可得q2.于是a2+a8=.【解答】解:设等比数列{an}的公比为q,∵a3a7=8=a4a6,a4+a6=6,解得,.∴q2=2或.则a2+a8==9.故答案为:9.【点评】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.三、解答题(本大题满分60分,解答应写出文字说明,证明过程或演算步骤)17.(12分)(2017•楚雄州一模)如图,在△ABC中,∠B=,AC=2.(1)若∠BAC=θ,求AB和BC的长.(结果用θ表示);(2)当AB+BC=6时,试判断△ABC的形状.【考点】GZ:三角形的形状判断.【分析】(1)根据正弦定理来求边AB、BC的长度;(2)由AB+BC=6得到:4sin(+θ)+4sinθ=6,结合和差化积公式得到θ的值,由此可以判定△ABC的形状为钝角三角形.【解答】解:(1)由正弦定理得:=,即=,所以BC=4sinθ.又∵∠C=π﹣﹣θ,∴sinC=sin(π﹣﹣θ)=sin(+θ).∴=即=,∴AB=4sin(+θ).(2)由AB+BC=6得到:4sin(+θ)+4sinθ=6,所以,8sin(+θ)×=6,整理,得sin(+θ)=.∵0<+θ<π,∴+θ=或+θ=,∴θ=,或θ=.∴△ABC是直角三角形.【点评】本题考查了三角形形状的判断.解题时,利用了正弦定理,和差化积公式等知识点,属于基础题.18.(12分)(2017•楚雄州一模)某单位利用周末时间组织员工进行一次“健康之路,携手共筑”徒步走健身活动,有n人参加,现将所有参加人员按年龄情况分为[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六组,其频率分布直方图如图所示.已知[35,40)之间的参加者有8人.(1)求n的值并补全频率分布直方图;(2)已知[30,40)岁年龄段中采用分层抽样的方法抽取5人作为活动的组织者,其中选取3人作为领队,记选取的3名领队中年龄在[30,35)岁的人数为ξ,求ξ的分布列和数学期望E(ξ).【考点】CH:离散型随机变量的期望与方差;B8:频率分布直方图;CG:离散型随机变量及其分布列.【分析】(1)先求出年龄在[35,40)之间的频率,由此能求出n,从而能求出第二组的频率,进而能求出第二组的矩形高,由此能补全频率分布直方图.(2)由(1)知,[30,35)之间的人数为12,又[35,40)之间的人数为8,采用分层抽样抽取5人,其中[30,35)岁中有3人,[35,40)岁中有2人,由题意,随机变量ξ的甩有可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(1)年龄在[35,40)之间的频率为0。04×5=0。2,∵=0。2,∴n==40,∵第二组的频率为:1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,∴第二组的矩形高为:=0。06,∴频率分布直方图如右图所示.(2)由(1)知,[30,35)之间的人数为0。06×5×40=12,又[35,40)之间的人数为8,∵[30,35)岁年龄段人数与[35,40)岁年龄段人数的比值为12:8=3:2,∴采用分层抽样抽取5人,其中[30,35)岁中有3人,[35,40)岁中有2人,由题意,随机变量ξ的甩有可能取值为1,2,3,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ123PEξ==.【点评】本题考查频率分布直方图的应用,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)(2017•楚雄州一模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求二面角B﹣AC﹣A1的余弦值.【考点】MR:用空间向量求平面间的夹角;MJ:与二面角有关的立体几何综合题.【分析】(Ⅰ)取AB中点O,连CO,OA1,A1B,由题设条件推导出△A1AB为正三角形,从而得到A1O⊥AB,由CA=CB,得到CO⊥AB,由此能够证明AB⊥A1C.(Ⅱ)以OA为x轴,以OA1为y轴,以OC为z轴建立空间直角坐标系O﹣xyz,利用向量法能求出二面角B﹣AC=A1的余弦值.【解答】(Ⅰ)证明:取AB中点O,连CO,OA1,A1B,∵AB=AA1,∠BAA1=60°,∴△A1AB为正三角形,∴A1O⊥AB,∵CA=CB,∴CO⊥AB,∵CO∩A1O=O,∴AB⊥平面COA1,∵A1C⊂平面COA1,∴AB⊥A1C.(Ⅱ)解:∵AB=CB=2,AB=AA1,CA=CB,∠BAA1=60°,∴CO=A1O==,∵A1C=,∴=,∴OC⊥A1O,∵OC∩AB=O,∴A1O⊥平面ABC,建立如图空间直角坐标系O﹣xyz,O(0,0,0),A(1,0,0),,C(0,0,),设平面AA1C的法向量为,则,,∴,∴=(,1,1),平面向量ACB的法向量=(0,1,0),cos<>==.∴二面角B﹣AC=A1的余弦值为.【点评】本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要注意向量法的合理运用.20.(12分)(2017•楚雄州一模)已知椭圆C:=1(a>b>0)的离心率为,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x﹣y+6=0相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线y=k(x﹣2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使2+•为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程.【分析】(1)求得圆O的方程,由直线和圆相切的条件:d=r,可得a的值,再由离心率公式,可得c的值,结合a,b,c的关系,可得b,由此能求出椭圆的方程;(2)由直线y=k(x﹣2)和椭圆方程,得(1+3k2)x2﹣12k2x+12k2﹣6=0,由此利用韦达定理、向量的数量积,结合已知条件能求出在x轴上存在点E,使•为定值,定点为(,0).【解答】解:(1)由离心率为,得=,即c=a,①又以原点O为圆心,椭圆C的长半轴长为半径的圆为x2+y2=a2,且与直线相切,所以,代入①得c=2,所以b2=a2﹣c2=2.所以椭圆C的标准方程为+=1.(2)由,可得(1+3k2)x2﹣12k2x+12k2﹣6=0,△=144k4﹣4(1+3k2)(12k2﹣6)>0,即为6+6k2>0恒成立.设A(x1,y1),B(x2,y2),所以x1+x2=,x1x2=,根据题意,假设x轴上存在定点E(m,0),使得为定值,则有=(x1﹣m,y1)•(x2﹣m,y2)=(x1﹣m)•(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣2)(x2﹣2)=(k2+1)x1x2﹣(2k2+m)(x1+x2)+(4k2+m2)=(k2+1)•﹣(2k2+m)•+(4k2+m2)=,要使上式为定值,即与k无关,则应3m2﹣12m+10=3(m2﹣6),即,此时=为定值,定点E为.【点评】本题考查椭圆方程的求法,考查满足条件的定点是否存在的判断与求法,是中档题,解题时要认真审题,注意韦达定理、向量的数量积、椭圆性质的合理运用.21.(12分)(2017•楚雄州一模)已知函数f(x)=e﹣x﹣ax(x∈R).(Ⅰ)当a=﹣1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(Ⅱ)得到ex+ax+ln(x+1)﹣1≥0.(*)令g(x)=ex+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;(Ⅲ)令a=2,得到,从而证出结论.【解答】解:(Ⅰ)当a=﹣1时,f(x)=e﹣x+x,则.…1分令f’(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f’(x)>0.…2分∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1.…3分(Ⅱ)若x≥0时,f(﹣x)+ln(x+1)≥1,即ex+ax+ln(x+1)﹣1≥0.(*)令g(x)=ex+ax+ln(x+1)﹣1,则.①若a≥﹣2,由(Ⅰ)知e﹣x+x≥1,即e﹣x≥1﹣x,故ex≥1+x.∴.…4分∴函数g(x)在区间[0,+∞)上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州二手房税费合同模板
- 电力工程测试合同模板
- 湖北第二师范学院《消费者行为学》2023-2024学年第一学期期末试卷
- 湖北第二师范学院《商务翻译I》2023-2024学年第一学期期末试卷
- 2024深圳市鸿视通科技有限公司代理合同范本
- 2024影视剧特技演员聘用合同
- 2024汽车抵押贷款合同的范本
- 2024年部编版五年级上册句子专项复习题及答案
- 2024产品准经销合同范例
- 心脏病病人护理查体
- 《基础阿拉伯语1》课程教学大纲
- 小学语文人教五年级上册第六单元群文课件
- 思想政治教育学原理课后答案
- 人教部编版八年级历史上册教学课件第五单元全套
- 新高考选科-专业解读课件
- 九种体质调理课件
- 一年级上学期期中家长会(语文老师)
- 口腔急诊处理课件
- 部编版五年级道德与法治上册第8课《美丽文字 民族瑰宝》优质课件
- 白鹭学情分析方案五年级语文
- 四川省建设工程量清单计价定额
评论
0/150
提交评论