版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2双曲线的几何性质分层作业A层基础达标练1.点到双曲线的一条渐近线的距离为()A. B. C.4 D.32.等轴双曲线的一个焦点是,则其标准方程为()A. B. C. D.3.已知双曲线,其虚轴长为2,则双曲线的离心率是()A. B. C.3 D.4.已知双曲线的实轴长为4,离心率为,则双曲线的标准方程为()A. B. C. D.5.当变化时,对于双曲线,值不变的是()A.实轴长 B.虚轴长 C.焦距 D.离心率6.[2023泰州质检]在平面直角坐标系中,双曲线:的渐近线的倾斜角是渐近线的倾斜角的2倍,第二象限内一点在渐近线上,且与双曲线的右焦点、点构成底边长为的等腰三角形,则双曲线的标准方程为()A. B. C. D.7.[2023常州期末]已知双曲线的焦点关于一条渐近线的对称点在轴上,则该双曲线的离心率为.8.已知双曲线的中心在原点,焦点,在坐标轴上,离心率为,且过点,点在双曲线上.(1)求双曲线的方程;(2)求证:;(3)求的面积.B层能力提升练9.[2023启东期中]设曲线是双曲线,则“的方程为”是“的渐近线方程为”的()A.充分必要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件10.(多选题)已知椭圆与双曲线,下列关于两曲线的说法正确的是()A.的长轴长与的实轴长相等 B.的短轴长与的虚轴长相等C.焦距相等 D.离心率不相等11.(多选题)已知对称轴都在坐标轴上的等轴双曲线过点,则()A.双曲线的焦点到渐近线的距离为2B.双曲线的虚轴长为2C.双曲线的两条渐近线互相垂直D.,为双曲线的两个焦点,过点的直线与双曲线的一支相交于,两点,则的周长为812.已知双曲线,,为左、右顶点,为右焦点,为虚轴的上端点,若在线段上(不含端点)存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率的取值范围是()A. B. C. D.13.记双曲线的离心率为,写出满足条件“直线与无公共点”的的一个值.14.若三个点,,中恰有两个点在双曲线上,则.15.从某个角度观察篮球(如图1),可以得到一个对称的平面图形,如图2所示,篮球的外轮形状为圆,将篮球表面的黏合线看成坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,,则该双曲线的焦距为.图1图216.已知,分别是双曲线:的左、右焦点,过点作垂直于轴的直线,在轴上方交双曲线于点,.(1)求双曲线的方程;(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,,求的值.C层拓展探究练17.打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可黏合材料,通过逐层打印的方式来构造物体的技术,如图所示的塔筒为打印的双曲线型塔筒,该塔筒是由离心率为的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为,下底直径为,高为,则喉部(最细处)的直径为()A. B. C. D.18.(多选题)已知曲线,则()A.上的点满足, B.关于轴、轴对称C.与轴、轴共有3个公共点 D.与直线只有1个公共点3.2.2双曲线的几何性质分层作业A层基础达标练1.B2.D3.A4.A5.D6.A7.8.(1)解因为,所以双曲线的实轴、虚轴相等.可设双曲线方程为.因为双曲线过点,所以,即,所以双曲线方程为.(2)证明不妨设,分别为左、右焦点,则,,所以.因为点在双曲线上,所以,即,所以.(3)解的底边.由(2)知,所以的高,所以.B层能力提升练9.B10.CD11.AC[解析]由题意可设双曲线的方程为,把点代入上式,得双曲线的方程为,所以双曲线的虚轴长为4;等轴双曲线的两条渐近线互相垂直;且渐近线方程为,焦点坐标分别为,,故焦点到渐近线的距离为2;由双曲线的定义可知的周长为,故错误.故选.12.B[解析]以,为直径的圆与线段有两个不同的交点,所以,,解得;且圆心到直线的距离为,化简,得,所以,.又,解得,所以双曲线离心率的取值范围是,.故选.13.2(答案不唯一,满足即可)14.15.16.(1)解由题易知,可设.因为点在双曲线上且在轴上方,所以,得,所以.在中,,,所以.由双曲线的定义可知,,故双曲线的方程为.(2)易知两条渐近线方程分别为,.设双曲线上的点,两条渐近线的夹角为,则.不妨设在上,在上,则点到两条渐近线的距离分别为,.因为在双曲线上,所以.又,所以,,所以,.C层拓展探究练17.D[解析]该塔筒的轴截面如图所示,以为喉部对应点,设与分别为上、下底面对应点,以双曲线的对称中心为原点,焦点所在轴为轴建立如图所示的坐标系.由题意可知,,设,则.设双曲线的方程为,因为双曲线的离心率为,所以.方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度游戏开发合作保密协议3篇
- 铝合金门窗生产批次检验与质量控制合同(二零二四年版)
- 2024年度二手房买卖合同中的房屋买卖合同的有效期2篇
- 人力资源员工培训设计方案
- 房贷借款合同模板标准版
- 2024年度企业信息网络安全服务合同2篇
- 《女生自我保护主题》课件
- 2024年度二手房买卖合同(个人与个人之间)
- 关于监理费延期的补充协议
- 《头晕与眩晕诊断》课件
- EPC项目设计组织方案及各阶段计划进度安排
- 小程序运营方案
- 广东省深圳市两校2023-2024学年高二上学期期末联考数学试卷(含答案)
- 高一新生学习方法指导课件
- 参加美术教师培训心得体会(30篇)
- 国开电大可编程控制器应用实训形考任务1实训报告
- 2024领导力培训课程ppt完整版含内容
- 森林火灾中的自救与互救课件
- 数据新闻可视化
- 中学生应急救护知识讲座
- ISO9001质量管理体系培训教材
评论
0/150
提交评论