版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
**ISO学员姓名: 年 级:九年级 辅导科目:数学 学科教师:授课日期授课主题教学目标教学重难点
把握轴对称的作图方法重点:把握轴对称的作图方法难点:把握轴对称的作图方法
授课时段利用轴对称进展设计教学内容利用轴对称进展设计剪纸的原理是什么?【学问梳理】1剪纸的原理是轴对称和轴对称图形的性质。剪纸是通过将纸对折,在折叠的纸上画出设计的图案,然后剪去不要的局部得到的,开放铺平后可以得到全等或对称的连续图案.对折的次数不同,剪得的图案也各异。留意:对折叠后的图形剪切后开放的图案常常推断不准确,要留意以折线为对称轴,然后补充图形,当很难推断时可实际动手操作。2利用轴对称图形设计图案:〔1〕对要求使用假设干个指定的图形设计轴对称图形的题目,应广泛联想生活中的有关事物,尽量发挥想象力气;〔2〕利用一个比较简洁的轴对称图形组成比较简洁的轴对称图形.留意:利用轴对称设计图案要留意四点:①要有比较清楚的设计意图;②创意要颖独到;③设计的图案要符合要求;④能清楚地表达自己的设计意图和制作过程【典型例题】考点一:利用轴对称的性质作图【1】如以下图,△ABCMNCMN上,求作:△A”B”C”,使△A”B”C”和△ABC关MN对称.〔不要求写作法,只保存作图痕迹〕【答案】从三角形的三个顶点,分别向MN引垂线,并延长一样距离,得到三个对应点,顺次连接就是所求的轴对称图形.【解析】解:如以下图,△A”B”C”即为所求.【总结】此题主要考察了作轴对称变换,留意画轴对称图形的关键主要是轴对称的性质,即对应点到对称轴的距离相等.【变式训练】下面两个轴对称图形分别只画出一半,请画出它的另一半.〔直线l为对称轴〕【答案】从各关键点向对称轴引垂线并延长一样单位得到各点的对应点,顺次连接即可.【解析】解:所作图形如下:考点二:利用轴对称设计图案【例2】以给定的图形“〇〇、△△、〓”〔两个圆、两个三角形、两条平行线〕为构体,构思独特且有意义的图形.举例:如图,左、中框是符合要求的两个图形,你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的讲解词.【答案】可让两个三角形做苹果树的树冠,平行线做树干,一个圆代表一个苹果.【解析】解:.【总结】考察学生的想象力;可把常见物体形象化.【变式训练】某学校打算在一块长方形空地上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成〔个数不限〕,并使长方形场地成轴对称图形,请你设计两个方案.【答案】依据轴对称图形的定义和题目要求画出图形即可.【解析】解:如以下图:.考点三:镶边与剪纸的综合应用【3】30cm6cm的纸条,将它每3cm一段,一反一正像“手风琴”那样折叠起来,并在折叠好的EEE〔如以下图〕.在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?假设以相邻两个图案为一组构成一个图案,任两个图案之间有什么关系?三个图案为一组呢?在上面的活动中,假设先把纸条纵向对折,再折成“手风琴”,然后连续上面的步骤,此时会得到的花边是轴对称图形吗?先猜一猜再做一做.〔1〕由于是在折叠好的纸上画出字母E,所以相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;依据轴对称的定义可知两个图案为一组成轴对称关系,三个图案为一组也成轴对称关系;按上面方法可得到是轴对称图形.【解析】解:〔1〕相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;两个图案为一组成轴对称关系,三个图案为一组也成轴对称关系;是轴对称图形.【总结】主要考察了轴对称的性质.轴对称的性质:〔1〕对应点所连的线段被对称轴垂直平分;〔2〕对应线段相等,对应角相等.【变式训练】把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如以下图的三角形小孔,则重开放后得到的图形是〔 〕A. B.C. D.【答案】解析该类剪纸问题,通过自己动手操作即可得出答案.【解析】解:重开放后得到的图形是C,应选:C.某校打算修建一座是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、角、正方形、圆、线段、矩形、梯形等七种图案,你认为不符合条件的是〔 〕正三角形、角 B.正方形、圆C.矩形、线段 D.正方形、梯形【答案】依据轴对称的定义,结合各图形进展推断即可.【解析】解:正三角形、角、正方形、圆、线段、矩形、是轴对称图形,梯形假设不是等腰梯形就不是轴对称图形;故假设正方形和梯形组合,不愿定能满足轴对称这个条件.应选:D.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,图中的设计符合要求的有〔 〕A.4个 B.3个 C.2个 D.1个【答案】轴对称图形的概念:把一个图形沿着某条直线折叠,能够与原图形重合,结合各图形进展推断即可.【解析】解:①是轴对称图形,符合题意;②是轴对称图形,符合题意;③是轴对称图形,符合题意;④是轴对称图形,符合题意;综上可得①②③④4个.应选:A.将一个正方形纸片依次按图〔1〕,图〔2〕方式对折,然后沿图〔3〕中的虚线裁剪,最终将图〔4〕的纸再开放铺平,所看到的图案是〔 〕B.C. D.【答案】严格依据图中的挨次亲自动手操作一下即可.【解析】解:严格依据图中的挨次向上对折,向右对折,从右下角剪去一个四分之一圆,从左上角和左下角各剪去一个直角三角形,开放得到结论.应选:D.将一张正方形纸片沿一对角线对折后,得到一个等腰直角三角形,再沿底边上的高线对折,把得到的图形〔如图〕沿虚线剪开,翻开阴影局部并铺平,此图形有2 条对称轴.【答案】依据其折叠的次数作答.【解析】解:依据其折叠了两次,且都是等腰直角三角形,则翻开的阴影局部有2条对称轴.如图,在正方形方格中,阴影局部是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的图案成为一个轴对称图形的涂法有〔 〕种 B.2种 C.3种 D.4种【答案】依据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的局部能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.1,2,3处分别涂黑都可得一个轴对称图形.应选:C.某居民小区响应政府的号召,乐观推动“城乡清洁工程”,拟在一块矩形空地〔如图〕上建一个花坛,现征集设计方案,要求设计的图案由圆和正方形组成〔圆和正方形的个数的和要求3个以上,多不限〕,并且使整个矩形场地成轴对称图形.请在图中画出你的设计方案.【答案】作简洁平面图形轴对称后的图形,其依据是轴对称的性质.根本作法①②用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.【解析】解:①设计的图案中圆和正方形的个数符合要求;〔3分〕②设计的图案能使矩形场地成轴对称图形.〔6分〕〔答案不唯一〕3×3936个空白小正方形中,按以下要求涂上阴影:14个阴影小正方形组成一个轴对称图形,但不是中心对称图形.14个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25个阴影小正方形组成一个轴对称图形.〔123中,均只需画出符合条件的一种情形〕【答案】〔1〕依据轴对称定义,在最上一行中间一列涂上阴影即可;依据中心对称定义,在最下一行、最右一列涂上阴影即可;在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解析】解:〔1〕1所示;2所示;3所示.图①、图②均是8×8OM、ON的端点均在格点上.在图①、图②OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:所画的两个四边形均是轴对称图形.所画的两个四边形不全等.【答案】利用轴对称图形性质,以及全等四边形的定义推断即可.【解析】解:如以下图:将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,开放铺平后的图形是〔 〕B. C. D.【答案】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解析】解:由于得到的图形的中间是正方形,且顶点在原来的正方形的对角线上,应选:A.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如以下图,小明按图2所示方法玩拼图玩耍,两两相扣,相互间不留空隙,那么小明用9个这样的图形〔1〕拼出来的图形的总长度是〔a,b代数式表示〕.19个这样的图形〔1〕8个〔a﹣b〕,即可得到拼出来的图形的总长度.方法2、口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣〔a﹣b〕]=8b﹣4a,即可得出结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市行业营业员工作总结
- 粤语语言艺术课程设计
- 液压泵站课课程设计
- 税务工作总结税收征管执法标准化
- 医疗器械行业人才管理
- 【八年级下册地理中图北京版】期中真题必刷卷A-【期中真题必刷卷】(北京专用)(解析版)
- 2024年设备监理师考试题库附答案(典型题)
- 咖啡馆店员服务总结
- 2024年设备监理师考试题库【考点梳理】
- 2024年美术教案:太阳花
- 国企人力资源岗位笔试题目多篇
- 病毒 课件 初中生物人教版八年级上册(2023~2024学年)
- JGT129-2017 建筑门窗五金件 滑轮
- 三年级科学上册水和空气复习课教案
- 2017数据中心设计规范
- 能源管理体系培训课件(2023年EnMS)
- 全国普通高校本科专业目录(2023版)
- 助产学导论学习通章节答案期末考试题库2023年
- 宁波大学“一页开卷”考试专用纸
- 新疆维吾尔自治区石河子市初中语文九年级期末高分通关题详细答案和解析
- 空置场地租赁协议
评论
0/150
提交评论