




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2章计算机的基础知识
内容提要计算机的运算基础命题逻辑与逻辑代数基础计算机的基本结构与工作原理程序设计基础算法基础数据结构基础基本要求:掌握数制间的转换方法以及数据在计算机内部的表示形式理解逻辑代数、计算机的工作原理、程序设计以及算法与数据结构的基本知识,为学习本书的以下各章和后续课程打好基础十进制
数制:按进位的原则进行计数称为进位计数制,简称数制。十进制:是使用数字1、2、…
、9、0等符号来表示数值且采用“逢十进一”的进位计数制。位权表示法数制的特点: 数字的总个数等于基数。最大的数字比基数小1。每个数字都要乘以基数的幂次,该幂次由每个数字所在的位置决定。任何一个N进制数A可表示为:A=AnAn-1
…A1A0.A-1A-2
…A-m-m
=∑Ai×Nii=n二进制
二进制:使用数字0和1等符号来表示数值且采用“逢二进一”的进位计数制。二进制数制的特点:仅使用0和1两个数字。最大的数字为1,最小的数字为0。每个数字都要乘以基数2的幂次,该幂次由每个数字所在的位置决定。二进制加法和乘法运算规则:
0+0=0 0×0=0 0+1=1 0×1=0 1+0=1 1×0=0 1+1=1 1×1=1八进制与十六进制
八进制:使用数字0、1、2、3、4、5、6、7等符号来表示数值的,且采用“逢八进一”的进位计数制。十六进制:使用数字0、1、2、3、4、5、6、7、8、9和A、B、C、D、E、F等符号来表示数值,其中A、B、C、D、E、F分别表示数字10、11、12、13、14、15。十六进制的计数方法为“逢十六进一”。数据在计算机中的表示一、基本概念二进制编码:任何形式的数据在计算机内部均以0和1表示。采用二进制的优点:容易实现,可靠性强,运算简单,通用性强。二、数制及其相互转换数制及其转换
一、数制
1、进位记数制2、计算机中数的表示法——二进制十进制(D)二进制(B)八进制(O)十六进制(H)0123456789101112131415011011100101110111100010011010101111001101111011110123456710111213141516170123456789ABCDEF(1)r进制转化成十进制10101(B)=1
24+023+1
22+021+120=21101.11(B)=1
22+021+120+1
2-1+1
2-2=5.75101(O)=1
82+0
81+1
80=6571(O)=7
81+180=57101A(H)=1
163+0162
+1
161+10
160=41063、不同进制之间的转换
原则:按权展开,相加之和。(2)十进制转化成r进制
整数部分:除以r取余数,直到商为0,余数从右到左排列。小数部分:乘以r取整数,整数从左到右排列。例100.345(D)=1100100.01011(B)100(D)=144(O)=64(H)100(D)=144(O)=64(H)=1100100(B)10025022521226232100010010.34520.69021.3802
0.7602
1.5202100812818044110016604616×××××1
1.04十进制小数转换为非十进制小数十进制小数并不是都能够用有限位的其他进制数精确地表示,这时应根据精度要求转换到一定的位数为止,作为其近似值。如果一个十进制数既有整数部分,又有小数部分,则应将整数部分和小数部分分别进行转换。(4)二进制转化成十六进制原则:四位一组整数部分:从右向左进行分组。小数部分:从左向右进行分组。
不足4位补零。
11
0110
1110.1101
01(B)=36E.D4(H)36ED464(H):64
0110
0100(B)(3)十六进制转化成二进制
原则:一分为四
每一个十六进制数对应二进制的四位。2C1D(H):2C1D
0010
1100
0001
1101(B)后边补两个零变为0100(5)八进制转化成二进制每一个八进制数对应二进制的三位。(7123)O=(111
001
010
011)B(144)O=(001
100
100)B(6)二进制转化成八进制整数部分:从右向左进行分组。小数部分:从左向右进行分组。转化成八进制时三位一组,不足补零。(1
101
101
110.110
101)B=(1556.65)O数值的表示机器数正数和负数:通常把数的最高位定义为符号位,0表示正,1表示负。机器数表示的范围受到字长和数据类型的限制。若表示一个整数,字长为8位,最大值为01111111,即127。整数和实数整数:带符号数和不带符号数。不同位数和数的表示范围实数:采用“浮点数”原码、反码和补码正数:原码、反码和补码均相同,其最高位为符号位,数值位是数的绝对值。负数原码:符号位为1,数值位是数的绝对值。反码:符号位不变,其余各位将原码按位取反。补码:符号位不变,其余各位将原码按位取反,再在最低位加1形成。给定一个数的真值,求原码、反码和补码。给定一个数的原码、反码和补码,求数的真值。(1)原码(假设字长8位)[X]原=0X,0X+7:00000111+0:000000001|X|,X0-7:10000111-0:10000000(2)反码[X]反=0X,0X+7:00000111+0:000000001|X|,X0-7:11111000-0:11111111(3)补码[X]补=0X,0X+7:00000111+0:000000001|X|+1,X0-7:11111001-0:00000000补码加法(1)-5+4[-5]补:11111011[+4]补:+)0000010011111111[-1]补(2)-9+(-5)[-9]补:11110111[-5]补:+)1111101111110010[-14]补1(3)127+5[+127]补:01111111[+5]补:+)0000010110000100运算结果是一个负数,溢出。
当运算结果超出了数的表达范围,称为溢出。什么情况下发生溢出?同号数相加,异号数相减,有可能产生溢出。
8位补码所能表达的数的范围是-128~+127;16位补码所能表达的数的范围是-32768~+32767课上作业对于二进制数10010101和01000010,对于下列情况分别相当于十进制数的多少?将其看做无符号数将其看做原码将其看做反码将其看做补码给定一个十进制数57,将其分别转换为八进制和十六进制数。定点小数格式
定点小数格式:把小数点固定在数值部分最高位的左边。
N0.N-1N-2......N-m
符号位小数点 数值部分
数的范围:二进制的(m+1)位定点小数格式的数N,所能表示的数的范围为|N|≤1-2-m。比例因子:对于绝对值大于1的数,如果直接使用定点小数格式将会产生“溢出”,需根据实际需要使用一个比例因子,将原始数据按该比例缩小,以定点小数格式表示,得出结果后再按该比例扩大得到实际的结果。定点整数格式
定点整数格式:把小数点固定在数值部分最低位的右边。
N0
NnNn-1......N2N1.
符号位数值部分 小数点
数的范围:二进制的(m+1)位定点整数格式的数N,所能表示的数的范围为|N|≤2m-1。比例因子:对于绝对值大于该范围的数,如果直接使用定点小数格式也将会产生“溢出”,需根据实际需要选择一个比例因子进行调整,使所表示的数据在规定的范围之内。浮点表示法(M.RE)浮点表示法:小数点的位置不固定,一个浮点数分为阶码和尾数两部分。阶码:用于表示小数点在该数中的位置,是一个整数。尾数:用于表示数的有效数值,可以采用整数或纯小数两种形式可供选择的一种位数分配形式:设字长为32位符号位阶码部分尾数部分
1位 8位 23位
规格化的浮点数:为了提高浮点数表示的精度通常规定其尾数的最高位必须是非零的有效位,称为浮点数的规格化形式。BCD码与ASCII码
BCD码:是一种二-十进制的编码,使用四位二进制数表示一位十进制数。十进制数与BCD码之间的转换:可按位(或四位二进制数组)直接进行。ASCII(AmericanStandardsCommitteeofInformation)码:是由美国信息交换标准委员会制定的、国际上使用最广泛的字符编码方案。ASCII码的编码方案:采用7位二进制数表示一个字符,把7位二进制数分为高三位(b7b6b5)和低四位(b4b3b2b1)7位ASCII编码表:如表2-5所示,利用该表可以查找数字、运算符、标点符号以及控制符等字符与ASCII码之间的对应关系。西文字符ASCII:用七位二进制表示,存储时占8位,最高位是奇偶校验位。常用字符有128个,编码从0到127。数字0~9,英文字母A~Z,a~z都是顺序排列每个字符占一个字节,即8位二进制位,最高位恒为0。字符的表示汉字编码体系
汉字输入码:由输入设备产生的汉字编码,如区位码、国标码、拼音码、新全拼、新双拼、五笔字型码、简码、表形码、自然码、智能ABC汉字输入码等。汉字内码:用于计算机内部存储和处理的汉字编码,通常由该汉字的国标码的两个字节(最高位置“1”)形成。汉字字形码:确定一个汉字字形点阵的编码,用于汉字显示和打印输出。保留在存储介质中的全部汉字字形码称为字库。汉字交换码:用于在不同的汉字信息处理系统之间或与其他计算机系统之间进行信息交换。汉字地址码:表示汉字字形信息在汉字库中的地址,用于在汉字库中查找汉字字形信息的汉字地址码等。数据校验码
奇偶校验码:在表示数据的N位代码中增加一位奇偶校验位,使N+1位中“1”的个数为奇数(奇校验)或偶数(偶校验)。海明校验码:在有效信息代码中增加校验位,用来校验代码中“1”的个数是奇数(奇校验)还是偶数(偶校验),通过奇偶校验可以发现代码传输过程中的错误并自动校正。应用:用于计算机各部件之间信息传输以及计算机网络的信息传输。汉字编码(1)汉字输入码国标区位码、全拼、双拼、微软拼音、五笔字形等。(2)汉字交换码国标码(GB2312-80):我国汉字交换码的国家标准其中:一级汉字:3755个;二级汉字:3008个。汉字分区,每个区94个汉字。
每个汉字占两个字节,国标码最高位为0。
每个汉字占两个字节,机内码最高位为1。区号区中位置例:汉字国标码汉字内码沪2706(0001101100000110B)1001101110000110B久3035(0001111000100011B)1001111010100011B(3)汉字内码汉字在设备或信息处理系统内部最基本的表达形式。(4)汉字字形码:又称汉字字模,用于汉字的显示或打印。汉字字形的字模数据,以点阵或矢量函数表示。 点阵:16×16、24×24、32×32、48×48。汉字字形码占用的存储空间:例:一个16╳16的汉字:16╱8
╳16=32字节一个24╳24的汉字:24╱8
╳24=72字节一个32╳32的汉字:32╱8
╳32=128字节两个48╳48的汉字:48╱8
╳48╳2=576字节2.2逻辑代数基础命题命题:有具体意义且能够判断真假的陈述句。命题的真值:命题所具有的值“真”(true,简记为T)或“假”(false,简记为F)称为其真值。命题标识符:表示命题的符号,该标识符称为命题常量。原子命题:不能分解为更为简单的陈述句的命题;复合命题:将原子命题用连接词和标点符号复合而成的命题。连接词“与”(∧)
“与”(∧):两个命题A和B的“与”(又称为A和B的“合取”)是一个复合命题,记为A∧B。当且仅当A和B同时为真时A∧B为真,在其他的情况下A∧B的真值均为假。
A∧B的真值表:
A
BA∧BTTTTFFFTFFFF连接词“或”(∨)
“或”(∨):两个命题A和B的“或”(又称为A和B的“析取”)是一个复合命题,记为A∨B。当且仅当A和B同时为假时A∨B为假,在其他的情况下A∨B的真值均为真。A∨B的真值表:A
B
A∨BTTTTFTFTTFFF连接词“非”(┑)“非”(┑):命题A的“非”(又称为A的“否定”)是一个复合命题,记为┑A。若A为真,则┑A为假;若A为假,则┑A为真。┑A的真值表:
A┑ATFFT连接词“异或”(⊕)“异或”(⊕):两个命题的A和B的“异或”(又称为A和B的“不可兼或”)是一个复合命题,记为A⊕B。当且仅当A和B同时为真或者同时为假时A⊕B为假,在其他的情况下A⊕B的真值为真。A⊕B的真值表:A
B
A⊕BTTFTFTFTTFFF连接词“条件”(→)“条件”(→):两个命题的A和B的“条件”是一个复合命题,记为
A→B,读作“如果A,则B”。当且仅当A的真值为真,B的真值为假时,A→B为假,在其他的情况下A→B的真值均为真。A→B的真值表:A
B
A→BTTTTFFFTTFFT连接词“双条件”()
“双条件”():两个命题的A和B的“双条件”(又称为A当且仅当B)是一个复合命题,记为AB,读作“A当且仅当B”。当且仅当A的真值与B的真值相同时,AB为真,否则AB的真值均为假。AB的真值表:A
B
ABTTTTFFFTTFFT命题公式
命题公式:由命题变元、连接词和括号组成的合式的式子称为命题公式。命题公式等价:如果两个不同的命题公式P和Q,无论其命题变元取什么值它们的真值都相同,则称该两个命题公式等价,记为P=Q。〖例2-25〗证明┑(A→B)与A∧┑B是等价的。
AB┑(A→B)A∧┑BTTFFTFTTFTFFFFFF命题公式的等价律
其中A、B、C等为命题变元,T表示“真”,F表示“假”零律:A∨F=A A∧F=F幺律:A∨T=T A∧T=A幂等律:A∨A=A A∧A=A求补律:A∨┓A=TA∧┓A=F交换律:A∨B=B∨AA∧B=B∧A命题公式的等价律(续)
结合律:A∨(B∨C)=(A∨B)∨C A∧(B∧C)=(A∧B)∧C分配律:A∧(B∨C)=A∧B∨A∧CA∨B∧C=(A∨B)∧(A∨C)吸收律:A∧B∨A∧┓B=A
(A∨B)∧(A∨┓B)=A 狄-摩根定律:┓(A∨B)=┓A∧┓B ┓(A∧B)=┓A∨┓B双重否定律:┓┓A=A证明狄-摩根定律
〖例2-26〗证明狄-摩根定律之一:┓(A∧B)=┓A∨┓B。AB
A∧B┓(A∧B)┓A┓B┓A∨┓BTTTFFFFTFFTFTTFTFTTFTFFFTTTT逻辑代数的等价律
零律:A+0=A A0=0幺律:A+1=1 A1=A幂等律:A+A=A AA=A求补律:A+Ā=1 AĀ=0逻辑代数的等价律(续)
BBBB(A+B)A(AB)交换律:A+B=B+A AB=BA结合律:A+(B+C)=(A+B)+CA(BC)=(AB)C分配律:A(B+C)=AB+ACA+BC=(A+B)(A+C)吸收律:AB+A=A
(A+B)(A+)=A 狄-摩根定律:=Ā
=Ā+双重否定律:
=A
A逻辑函数的化简
〖例2-27〗试将逻辑函数F=A+ĀB化简。解:F=A+ĀB =(A+Ā)(A+B) (分配律) =1(A+B) (求补律)=A+B (幺律)〖例2-28〗试将逻辑函数F=AB+A+ĀB+化简。解:F=AB+A+ĀB+=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业招商合作合同标准文本
- 2025电子产品区域代理合同范本模板
- 加强职业健康管理的实施方案计划
- 2025风力发电站股权转让居间合同
- 小乌鸦爱妈妈教学反思6篇
- 幼儿园节目串词(9篇)
- 《狗·猫·鼠》读后感【7篇】
- 临时过户合同标准文本
- 公司资产盘合同标准文本
- 借贷公司合同范例
- 争做最美班级主题班会课件
- 铁路职工政治理论应知应会题库
- 2020年交安A、B、C证(公路)考试题库1088题(含答案)
- 墙绘验收单模板
- 节后复工检查表
- 财务有哪些制度要上墙
- 医学教学课件:软组织肿瘤影像诊断
- 矿山矿石损失与贫化管理规程
- 安全生产晨会管理制度
- 直线导轨装配文档课件
- 2022年招标师资格《招标采购专业实务》考试题库(真题整理版)
评论
0/150
提交评论