2024届湖北省武汉市六中学致诚中学九年级数学第一学期期末质量检测模拟试题含解析_第1页
2024届湖北省武汉市六中学致诚中学九年级数学第一学期期末质量检测模拟试题含解析_第2页
2024届湖北省武汉市六中学致诚中学九年级数学第一学期期末质量检测模拟试题含解析_第3页
2024届湖北省武汉市六中学致诚中学九年级数学第一学期期末质量检测模拟试题含解析_第4页
2024届湖北省武汉市六中学致诚中学九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉市六中学致诚中学九年级数学第一学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,二次函数的图像向右平移2个单位后的函数为()A. B.C. D.2.如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是()A.2 B.3 C.4 D.53.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为()A.y=﹣1 B.y=﹣3 C.y=﹣2 D.y=﹣24.下列y和x之间的函数表达式中,是二次函数的是()A. B. C. D.y=x-35.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为(单位:)温度为(单位:).当时,与的函数关系是,则时该地区的最高温度是()A. B. C. D.6.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)7.二次函数y=x2的图象向左平移1个单位,再向下平移3个单位后,所得抛物线的函数表达式是()A.y=+3 B.y=+3C.y=﹣3 D.y=﹣38.已知x=1是方程x2+m=0的一个根,则m的值是()A.﹣1 B.1 C.﹣2 D.29.如图,在中,所对的圆周角,若为上一点,,则的度数为()A.30° B.45° C.55° D.60°10.如图,关于抛物线,下列说法错误的是()A.顶点坐标为(1,)B.对称轴是直线x=lC.开口方向向上D.当x>1时,y随x的增大而减小11.如图,在中,分别为边上的中点,则与的面积之比是()A. B. C. D.12.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172,方差为,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172,此时全班同学身高的方差为,那么与的大小关系是()A. B. C. D.无法判断二、填空题(每题4分,共24分)13.如图,已知AD∥EF∥BC,如果AE=2EB,DF=6,那么CD的长为_____.14.使式子有意义的x的取值范围是____.15.若a、b、c、d满足ab=cd=16.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.17.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________.18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.三、解答题(共78分)19.(8分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出50辆;若每辆自行车每降价20元,每月可多售出5辆,求该型号自行车降价多少元时,每月可获利30000元?20.(8分)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?21.(8分)解方程:(1)x1﹣1x﹣3=0;(1)3x1﹣6x+1=1.22.(10分)如图,抛物线经过点,请解答下列问题:求抛物线的解析式;抛物线的顶点为点,对称轴与轴交于点,连接,求的长.点在抛物线的对称轴上运动,是否存在点,使的面积为,如果存在,直接写出点的坐标;如果不存在,请说明理由.23.(10分)如图,以40m/s的速度将小球沿与地面30°角的方向击出时,小球的飞行路线是一段抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系式为h=20t-(t≥0).回答问题:(1)小球的飞行高度能否达到19.5m;(2)小球从最高点到落地需要多少时间?24.(10分)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.25.(12分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?26.如图,我国海监船在处发现正北方向处有一艘可疑船只,正沿南偏东方向航行,我海监船迅速沿北偏东方向去拦裁,经历小时刚好在处将可疑船只拦截,已知我海监船航行的速度是每小时海里,求可疑船只航行的距离.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据“左加右减,上加下减”的规律,求出平移后的函数表达式即可;【题目详解】解:根据“左加右减,上加下减”得,二次函数的图像向右平移2个单位为:;故选B.【题目点拨】本题主要考查了二次函数与几何变换,掌握二次函数与几何变换是解题的关键.2、C【分析】①根据开口方向,对称轴的位置以及二次函数与y轴的交点的位置即可判断出a,b,c的正负,从而即可判断结论是否正确;②根据对称轴为即可得出结论;③利用顶点的纵坐标即可判断;④利用时的函数值及a,b之间的关系即可判断;⑤利用时的函数值,即可判断结论是否正确.【题目详解】①∵抛物线开口方向向上,.∵对称轴为,∴.∵抛物线与y轴的交点在y轴的负半轴,∴,∴,故错误;②∵对称轴为,∴,,故正确;③由顶点的纵坐标得,,∴,∴,∴,故正确;④当时,,故正确;⑤当时,,故正确;所以正确的有4个,故选:C.【题目点拨】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.3、A【分析】根据“上加下减,左加右减”的原则进行解答即可.【题目详解】解:将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为y=x2﹣2+1,即y=x2﹣1.故选:A.【题目点拨】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.4、A【分析】根据二次函数的定义(一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数)进行判断.【题目详解】A.可化为,符合二次函数的定义,故本选项正确;B.,该函数等式右边最高次数为3,故不符合二次函数的定义,故本选项错误;C.,该函数等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误;D.y=x-3,属于一次函数,故本选项错误.故选:A.【题目点拨】本题考查了二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,化简后最高次必须为二次,且二次项系数不为0.5、D【分析】利用配方法求最值.【题目详解】解:∵a=-1<0∴当t=5时,y有最大值为36故选:D【题目点拨】本题考查配方法求最值,掌握配方法的方法正确计算是本题的解题关键.6、B【解题分析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【题目详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【题目点拨】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.7、D【分析】先求出原抛物线的顶点坐标,再根据平移,得到新抛物线的顶点坐标,即可得到答案.【题目详解】∵原抛物线的顶点为(0,0),∴向左平移1个单位,再向下平移1个单位后,新抛物线的顶点为(﹣1,﹣1).∴新抛物线的解析式为:y=﹣1.故选:D.【题目点拨】本题主要考查二次函数图象的平移规律,通过平移得到新抛物线的顶点坐标,是解题的关键.8、A【分析】把x=1代入方程,然后解一元一次方程即可.【题目详解】把x=1代入方程得:1+m=0,解得:m=﹣1.故选A.【题目点拨】本题考查了一元二次方程的解.掌握一元二次方程的解的定义是解答本题的关键.9、B【解题分析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【题目详解】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【题目点拨】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.10、D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x>1时,y随x的增大而增大,根据结论即可判断选项.【题目详解】解:∵抛物线y=(x-1)2-2,A、因为顶点坐标是(1,-2),故说法正确;B、因为对称轴是直线x=1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>1时,y随x的增大而增大,故说法错误.故选D.11、A【分析】根据相似三角形的性质即可求出答案.【题目详解】由题意可知:是的中位线,,,,故选:A.【题目点拨】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.12、B【分析】设该班的人数有n人,除小明外,其他人的身高为x1,x2……xn-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm,然后根据方差公式比较大小即可.【题目详解】解:设该班的人数有n人,除小明外,其他人的身高为x1,x2……xn-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm根据方差公式:∵∴即故选B.【题目点拨】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.二、填空题(每题4分,共24分)13、9【解题分析】∵AD∥EF∥BC,,∴DF=6,∴FC=3,DC=DF+FC=9,故答案为9.14、【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【题目详解】解:由题意得:x-1≥0,x-1≠0,

解得:x≥1,x≠1.

故答案为x≥1且x≠1.【题目点拨】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数、分母不为零.15、3【解题分析】根据等比性质求解即可.【题目详解】∵ab∴a+cb+d=a故答案为:34【题目点拨】本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c16、(0,).【解题分析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.17、20%【分析】根据增长(降低)率公式可列出式子.【题目详解】设月平均增长率为x.根据题意可得:.解得:.所以增长率为20%.故答案为:20%.【题目点拨】本题主要考查了一元二次方程的应用,记住增长率公式很重要.18、【解题分析】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为.【题目点拨】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.三、解答题(共78分)19、(1)该型号自行车的进价为1000元,标价为1元;(2)该型号自行车降价100元或2元时,每月可获利30000元.【分析】(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,根据利润=售价﹣进价结合按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,根据总利润=每辆的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出结论.【题目详解】解:(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,依题意,得:8×[0.9×(1+50%)x﹣x]=7×[(1+50%)x﹣100﹣x],解得:x=1000,∴(1+50%)x=1.答:该型号自行车的进价为1000元,标价为1元.(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,依题意,得:(1﹣1000﹣y)(50+y)=30000,整理,得:y2﹣300y+200=0,解得:y1=100,y2=2.答:该型号自行车降价100元或2元时,每月可获利30000元.【题目点拨】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.20、(1)y1=2x+6;(2)y2=x2﹣x+;(3)w=﹣x2+x﹣,1月份销售每千克猪肉所第获得的利润最大,最大利润是11元1.【分析】(1)设与x之间的函数关系式为,将(3,12)(4,14)代入解方程组即可得到结论;

(2)由题意得到抛物线的顶点坐标为(3,9),设与x之间的函数关系式为:=,将(5,10)代入=得=10,解方程即可得到结论;

(3)由题意得到w=−=2x+6−+x−=−+x−,根据二次函数的性质即可得到结论.【题目详解】(1)设y1与x之间的函数关系式为y1=kx+b,将(3,12)(4,14)代入y1得,,解得:,∴y1与x之间的函数关系式为:y1=2x+6;(2)由题意得,抛物线的顶点坐标为(3,9),∴设y2与x之间的函数关系式为:y2=a(x﹣3)2+9,将(5,10)代入y2=a(x﹣3)2+9得a(5﹣3)2+9=10,解得:a=,∴y2=(x﹣3)2+9=x2﹣x+;(3)由题意得,w=y1﹣y2=2x+6﹣x2+x﹣=﹣x2+x﹣,∵﹣<0,∴w由最大值,∴当x=﹣=﹣=1时,w最大=﹣×12+×1﹣=1.【题目点拨】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.21、(1)x1=3,x1=﹣1;(1)x1=,x1=【分析】(1)利用因式分解法求解可得;

(1)整理为一般式,再利用公式法求解可得.【题目详解】解:(1)原方程可以变形为(x﹣3)(x+1)=0,∴x﹣3=0,x+1=0,∴x1=3,x1=﹣1;(1)方程整理为一般式为3x1﹣6x﹣1=0,∵a=3,b=﹣6,c=﹣1,∴=36﹣4×3×(﹣1)=48>0,则,即.【题目点拨】本题考查了解一元二次方程,应熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22、(1)y=-x2+2x+3;(2)2;(3)存在点F,点F(1,2)或(1,-2)【分析】(1)利用待定系数法即可求出结论;(2)先求出顶点D的坐标,然后分别求出BE和DE的长,利用勾股定理即可求出结论;(3)先求出BC的长,然后根据三角形的面积公式即可求出点F的纵坐标,从而求出结论.【题目详解】解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),∴将A(0,3),B(-1,0)代入得:,解得:则抛物线解析式为y=-x2+2x+3;(2)y=-x2+2x+3=-(x-1)2+4由D为抛物线顶点,得到D(1,4),∵

对称轴与

x

轴交于点E

,∴

DE=4,OE=1

,∵

B(﹣1,0),∴

BO=1,∴

BE=2,在

RtBED

中,根据勾股定理得:

BD==2(3)抛物线的对称轴为直线x=1由对称性可得:点C的坐标为(3,0)∴BC=3-(-1)=4∵的面积为,∴BC·=4解得:=2或-2∴点F的坐标为(1,2)或(1,-2)即存在点F,点F(1,2)或(1,-2)【题目点拨】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、勾股定理和三角形的面积公式是解决此题的关键.23、(1)19.5m;(2)2s【分析】(1)根据抛物线解析式,先求出抛物线的定点,判断小球最高飞行高度,从而判断能否达到19.5m;(2)根据定点坐标知道,小球飞从地面飞行至最高点需要2s,根据二次函数的对称性,可知从最高落在地面,也需要2s.【题目详解】(1)h=20t-由二次函数可知:抛物线开口向下,且顶点坐标为(2,20),可知小球的飞行高度为h=20m>19.5m所以小球的飞行高度能否达到19.5m;(2)根据抛物线的对称性可知,小球从最高点落到地面需要的时间与小球从地面上到最高点的时间相等.因为由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论