2024届云南省临沧市名校九年级数学第一学期期末联考模拟试题含解析_第1页
2024届云南省临沧市名校九年级数学第一学期期末联考模拟试题含解析_第2页
2024届云南省临沧市名校九年级数学第一学期期末联考模拟试题含解析_第3页
2024届云南省临沧市名校九年级数学第一学期期末联考模拟试题含解析_第4页
2024届云南省临沧市名校九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省临沧市名校九年级数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定2.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米3.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:165.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为()A. B. C. D.6.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个 B.3个 C.4个 D.5个7.己知a、b、c均不为0,且,若,则k=()A.-1 B.0 C.2 D.38.如图,在圆内接四边形ABCD中,∠A:∠C=1:2,则∠A的度数等于()A.30° B.45° C.60° D.80°9.如图,BD是⊙O的直径,圆周角∠A=30,则∠CBD的度数是()A.30 B.45 C.60 D.8010.已知反比例函数,下列结论中不正确的是()A.图象必经过点 B.随的增大而增大C.图象在第二,四象限内 D.若,则11.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.12.某厂今年3月的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率为x,则列出的方程正确的是()A.50(1+x)=72 B.50(1+x)+50(1+x)2=72C.50(1+x)×2=72 D.50(1+x)2=72二、填空题(每题4分,共24分)13.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.14.我军侦察员在距敌方120m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.15.从一批节能灯中随机抽取40只进行检查,发现次品2只,则在这批节能灯中随机抽取一只是次品的概率为_______.16.如图是某幼儿园的滑梯的简易图,已知滑坡AB的坡度是1:3,滑梯的水平宽是6m,则高BC为_______m.17.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=.18.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题(共78分)19.(8分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3),(1)①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出△ABC绕原点O逆时针旋转90°得到的△A2B2C2,写出点C2的坐标;(2)若△ABC上任意一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则点Q的坐标为________.(用含m,n的式子表示)20.(8分)如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,BE=4,求BC的长.21.(8分)如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)将以原点为旋转中心旋转得到,画出旋转后的.(2)平移,使点的对应点坐标为,画出平移后的(3)若将绕某一点旋转可得到,请直接写出旋转中心的坐标.22.(10分)如图,中,,,为内部一点,.求证:.23.(10分)体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另个人记为踢一次.如果从小强开始踢,请你用列表法或画树状图法解决下列问题:(1)经过两次踢球后,足球踢到小华处的概率是多少?(2)经过三次踢球后,足球踢回到小强处的概率是多少?24.(10分)如图l,在中,,,于点,是线段上的点(与,不重合),,,连结,,,.(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点.①求证:;②当为等腰直角三角形,且时,请求出的值.25.(12分)如图是一根钢管的直观图,画出它的三视图.26.甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五角星纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人大?”你认为他的怀疑有没有道理?谈谈你的想法并用列表或画树状图方法说明原因.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】试题分析:设ax2+bx+c=1(a≠1)的两根为x1,x2,由二次函数的图象可知x1+x2>1,a>1,设方程ax2+(b﹣)x+c=1(a≠1)的两根为a,b再根据根与系数的关系即可得出结论.设ax2+bx+c=1(a≠1)的两根为x1,x2,∵由二次函数的图象可知x1+x2>1,a>1,∴﹣>1.设方程ax2+(b﹣)x+c=1(a≠1)的两根为a,b,则a+b=﹣=﹣+,∵a>1,∴>1,∴a+b>1.考点:抛物线与x轴的交点2、A【分析】试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【题目详解】请在此输入详解!3、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【题目详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【题目点拨】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.4、C【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【题目详解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【题目点拨】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积的比等于相似比的平方.5、C【解题分析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率.【题目详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为,所以,P落在三角形内的概率是.故选C.【题目点拨】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.6、A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【题目详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【题目点拨】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.7、D【解题分析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【题目详解】∵∴,,三式相加得,∵∴k=3.故选D.【题目点拨】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.8、C【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【题目详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【题目点拨】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.9、C【解题分析】由BD为⊙O的直径,可证∠BCD=90°,又由圆周角定理知,∠D=∠A=30°,即可求∠CBD.【题目详解】解:如图,连接CD,∵BD为⊙O的直径,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故选C.【题目点拨】本题利用了直径所对的圆周角是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10、B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【题目详解】A、反比例函数,所过的点的横纵坐标之积=−6,此结论正确,故此选项不符合题意;B、反比例函数,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数,当x>1时图象在第四象限,y随x的增大而增大,故x>1时,−6<y<0;故选:B.【题目点拨】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.11、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【题目详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【题目点拨】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.12、D【分析】可先表示出4月份的产量,那么4月份的产量×(1+增长率)=5月份的产量,把相应数值代入即可求解.【题目详解】4月份产值为:50(1+x)5月份产值为:50(1+x)(1+x)=50(1+x)2=72故选D.点睛:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题(每题4分,共24分)13、【分析】将x=-3代入原方程,解一元二次方程即可解题.【题目详解】解:将x=-3代入得,a=-1,∴原方程为,解得:x=1或-3,【题目点拨】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.14、1【分析】如图(见解析),过点A作,交BC于点F,利用平行线分线段成比例定理推论求解即可.【题目详解】如图,过点A作,交BC于点F由题意得则(平行线分线段成比例定理推论)即解得故答案为:1.【题目点拨】本题考查了平行线分线段成比例定理推论,读懂题意,将所求问题转化为利用平行线分线段成比例定理推论的问题是解题关键.15、【分析】利用概率公式求解可得.【题目详解】解:在这批节能灯中随机抽取一只是次品的概率为=,故答案为:.【题目点拨】本题考查概率公式,熟练掌握计算法则是解题关键.16、1【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【题目详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,

∴AC=6m,∴BC=×6=1m.故答案为:1.【题目点拨】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.17、π.【解题分析】图1,过点O做OE⊥AC,OF⊥BC,垂足为E.

F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3−r,BD=4−r∴3−r+4−r=5,r==1∴S1=π×12=π图2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5−=,由(1)得:⊙O的半径=,⊙E的半径=,∴S1+S2=π×()2+π×()2=π.图3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4−=,由(1)得:⊙O的半径=,⊙E的半径=,∴⊙F的半径=,∴S1+S2+S3=π×()2+π×()2+π×()2=π18、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【题目详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【题目点拨】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。三、解答题(共78分)19、(1)①见解析,②见解析,点C2的坐标为(-3,1);(2)(-n,m)【分析】(1)①根据关于原点对称的点的坐标特征得到A1、B1、C1的坐标,然后描点即可;

②利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,然后顺次连接,从而得到点C2的坐标;

(2)利用②中对应点的规律写出Q的坐标.【题目详解】解:(1)①如图,△A1B1C1为所求;②如图,△A2B2C2为所求,点C2的坐标为(-3,1)(2)∵A(0,1)绕原点O逆时针旋转90°的对应点A2(-1,0),B(3,3)绕原点O逆时针旋转90°的对应点B2(-3,3),C(1,3)绕原点O逆时针旋转90°的对应点C2(-3,1),∴点Q的坐标为(-n,m).【题目点拨】本题考查了作图−−中心对称与旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明AB⊥BC即可,即证∠ABC=90°.连接AF,依据直径所对圆周角为90度,可以得到∠AFB=90°,依据三线合一可以得到2∠BAF=∠BAC,再结合已知条件进行等量代换可得∠BAF=∠EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出∠BAF=∠EBC的正弦值,过E作EG⊥BC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【题目详解】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切;(2)解:过E作EG⊥BC于点G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠BAF=∠EBC,∴sin∠EBC=.又∵在△EGB中,∠EGB=90°,∴EG=BE•sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE=8+=.在Rt△ABC中,BC=【题目点拨】本题考查了切线的判定定理,相似三角形的判定及性质,等腰三角形三线合一的性质,锐角三角函数等知识,作辅助线构造熟悉图形,实现角或线段的转化是解题的关键.21、(1)见解析;(2)见解析;(3)旋转中心坐标为.【分析】(1)依据旋转的性质确定出A1,B1,C1,然后用线段吮吸连接即可得到△A1B1C1;(2)依据点A的对应点A2坐标为(3,-3),确定出平移的方式,然后根据平移的性质即可画出平移后的△A2B2C2;(3)连接对应点的连线可发现旋转中心.【题目详解】解:(1)如图所示:即为所求;(2)如图所示:即为所示;(3)如图,旋转中心坐标为.【题目点拨】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.本题也考查了平移作图.22、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【题目详解】解:,,又,,,又,.【题目点拨】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.23、(1);(2).【分析】(1)根据画列表法或树状图求概率;(2)根据画列表法或树状图求概率【题目详解】解:(1)画树状图如下图所示:由树状图可知,(经过两次踢球后,足球踢到小华处).(2)画树状图如下图所示:由树状图可知,(经过三次踢球后,足球踢回到小强处).【题目点拨】本题考查了根据画树状图求概率24、(1)见解析;(2)①见解析;②【分析】(1)通过证明△EAB≌△FAB,即可得到BE=BF;

(2)①首先证明△AEB≌△AFC,由相似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论