版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省连云港市外国语学校数学九上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A.
或
B.
或
C.
或D.2.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则sin∠BDE的值是()A. B. C. D.3.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.4.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.5.在中,,另一个和它相似的三角形最长的边是,则这个三角形最短的边是()A. B. C. D.6.如图,,两条直线与这三条平行线分别交于点、、和、、,若,则的值为()A. B. C. D.7.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则的度数为()A.24° B.56° C.66° D.76°8.二次函数的图象如图所示,若点A和B在此函数图象上,则与的大小关系是()A. B. C. D.无法确定9.如图,Rt△ABC中,∠B=90°,AB=3,BC=2,则cosA=()A. B. C. D.10.下列事件中,必然事件是()A.抛掷个均匀的骰子,出现点向上 B.人中至少有人的生日相同C.两直线被第三条直线所截,同位角相等 D.实数的绝对值是非负数11.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.如图,小彬收集了三张除正面图案外完全相同的卡片,其中两张印有中国国际进口博览会的标志,另外一张印有进博会吉祥物“进宝”.现将三张卡片背面朝上放置,搅匀后从中一次性随机抽取两张,则抽到的两张卡片图案不相同的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.已知y是x的二次函数,y与x的部分对应值如下表:x...-1012...y...0343...该二次函数图象向左平移______个单位,图象经过原点.14.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为____.15.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.16.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.17.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.18.二次函数的图象与y轴的交点坐标是________.三、解答题(共78分)19.(8分)如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长.20.(8分)关于的一元二次方程有两个实数根,求的取值范围.21.(8分)如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.22.(10分)⊙O直径AB=12cm,AM和BN是⊙O的切线,DC切⊙O于点E且交AM于点D,交BN于点C,设AD=x,BC=y.(1)求y与x之间的关系式;(2)x,y是关于t的一元二次方程2t2﹣30t+m=0的两个根,求x,y的值;(3)在(2)的条件下,求△COD的面积.23.(10分)某校组织了主题为“我是青奥志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按,,,四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求一共抽取了多少份作品?(2)此次抽取的作品中等级为的作品有份,并补全条形统计图;(3)扇形统计图中等级为的扇形圆心角的度数为;(4)若该校共征集到800份作品,请估计等级为的作品约有多少份?24.(10分)如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.25.(12分)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.26.如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:故选B.点睛:二次函数二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.2、C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【题目详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故选C.【题目点拨】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.3、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【题目详解】∵点在反比例函数,的面积为故选:C.【题目点拨】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.4、A【解题分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【题目详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.5、B【分析】设另一个三角形最短的一边是x,根据相似三角形对应边成比例即可得出结论.【题目详解】设另一个三角形最短的一边是x,∵△ABC中,AB=12,BC=1,CA=24,另一个和它相似的三角形最长的一边是36,∴,解得x=1.故选:C.【题目点拨】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.6、C【分析】直接利用平行线分线段成比例定理即可得出结论.【题目详解】∵l1∥l2∥l3,∴,∵,∴.故选:C.【题目点拨】本题考查了平行线分线段成比例定理,得出是解答本题的关键.7、C【分析】先求出∠B的度数,然后再根据圆周角定理的推论解答即可.【题目详解】∵AB是⊙O的直径∴∵∠BAD=24°∴又∵∴=66°故答案为:C.【题目点拨】本题考查了圆周角定理的推论:①在同圆或等圆中同弧或等弧所对圆周角相等;②直径所对圆周角等于90°8、A【分析】由图象可知抛物线的对称轴为直线,所以设点A关于对称轴对称的点为点C,如图,此时点C坐标为(-4,y1),点B与点C都在对称轴左边,从而利用二次函数的增减性判断即可.【题目详解】解:∵抛物线的对称轴为直线,∴设点A关于对称轴对称的点为点C,∴点C坐标为(-4,y1),此时点A、B、C的大体位置如图所示,∵当时,y随着x的增大而减小,,∴.故选:A.【题目点拨】本题主要考查了二次函数的图象与性质,属于基本题型,熟练掌握二次函数的性质是解题关键.9、D【分析】根据勾股定理求出AC,根据余弦的定义计算得到答案.【题目详解】由勾股定理得,AC===,则cosA===,故选:D.【题目点拨】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.10、D【分析】根据概率、平行线的性质、负数的性质对各选项进行判断.【题目详解】A.抛掷个均匀的骰子,出现点向上的概率为,错误.B.367人中至少有人的生日相同,错误.C.两条平行线被第三条直线所截,同位角相等,错误.D.实数的绝对值是非负数,正确.故答案为:D.【题目点拨】本题考查了必然事件的性质以及判定,掌握概率、平行线的性质、负数的性质是解题的关键.11、C【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【题目详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【题目点拨】考点:1、中心对称图形;2、轴对称图形12、D【分析】根据题意列出相应的表格,得到所有等可能出现的情况数,进而找出满足题意的情况数,即可求出所求的概率.【题目详解】设印有中国国际进口博览会的标志为“”,印有进博会吉祥物“进宝”为,由题列表为所有的等可能的情况共有种,抽到的两卡片图案不相同的等可能情况共有种,,故选:D.【题目点拨】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每题4分,共24分)13、2【分析】利用表格中的对称性得:抛物线与x轴另一个交点为(2,0),可得结论.【题目详解】解:由表格得:二次函数的对称轴是直线x==1.∵抛物线与x轴的一个交点为(-1,0),∴抛物线与x轴另一个交点为(2,0),∴该二次函数图象向左平移2个单位,图象经过原点;或该二次函数图象向右平移1个单位,图象经过原点.故填为2.【题目点拨】本题考查了二次函数图象与几何变换-平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.14、1【分析】利用角角定理证明△BAD∽△BCA,然后利用相似三角形的性质得到,求得BC的长,从而使问题得解.【题目详解】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴.∵AB=6,BD=4,∴,∴BC=9,∴CD=BC-BD=9-4=1.【题目点拨】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键..15、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【题目详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【题目点拨】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.16、75°【解题分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【题目详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75°.【题目点拨】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.17、1:1.【解题分析】试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考点:相似三角形的性质.18、【分析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【题目详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【题目点拨】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.三、解答题(共78分)19、(1),D;(2)是直角三角形,见解析;(3),.【分析】(1)直接将(−1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,求出直线的解析式,可得M点坐标,然后易求此时△ACM的周长.【题目详解】解:(1)∵点在抛物线上,∴,解得:.∴抛物线的解析式为,∵,∴顶点的坐标为:;(2)是直角三角形,证明:当时,∴,即,当时,,解得:,,∴,∴,,,∵,,,∴,∴是直角三角形;(3)如图所示:BC与对称轴交于点M,连接,根据轴对称性及两点之间线段最短可知,此时的值最小,即周长最小,设直线解析式为:,则,解得:,故直线的解析式为:,∵抛物线对称轴为∴当时,,∴,最小周长是:.【题目点拨】此题主要考查了二次函数综合应用、利用轴对称求最短路线以及勾股定理的逆定理等知识,得出M点位置是解题关键.20、.【分析】根据判别式即可求出的取值范围.【题目详解】∵,,,方程有两个实数根,∴,∴,∴.【题目点拨】本题主要考查了根的判别式的应用,解题的关键是熟记根的判别式.21、(1)中心;(2)如图,线段FI为此光源下所形成的影子.见解析【分析】(1)根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;(2)如图(见解析),先通过AB、CD的影子确认光源O的位置,再作立柱EF在光源O下的投影即可.【题目详解】(1)由中心投影的定义得:此光线下形成的投影是:中心投影故答案为:中心;(2)如图,连接GA、HC,并延长相交于点O,则点O就是光源,再连接OE,并延长与地面相交,交点为I,则FI为立柱EF在此光源下所形成的影子.【题目点拨】本题考查了中心投影的定义,根据已知立柱的影子确认光源的位置是解题关键.22、(1)y=;(2)或;(3)1.【分析】(1)如图,作DF⊥BN交BC于F,根据切线长定理得,则DC=DE+CE=x+y,在中根据勾股定理,就可以求出y与x之间的关系式.(2)由(1)求得,由根与系数的关系求得的值,通过解一元二次方程即可求得x,y的值.(3)如图,连接OD,OE,OC,由AM和BN是⊙O的切线,DC切⊙O于点E,得到,,,推出S△AOD=S△ODE,S△OBC=S△COE,即可得出答案.【题目详解】(1)如图,作DF⊥BN交BC于F;∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y,∴FC=BC﹣BF=y﹣x;∵DE切⊙O于E,∴DE=DA=xCE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(y﹣x)2+122,整理为:y=,∴y与x的函数关系式是y=.(2)由(1)知xy=36,x,y是方程2x2﹣30x+a=0的两个根,∴根据韦达定理知,xy=,即a=72;∴原方程为x2﹣15x+36=0,解得或.(3)如图,连接OD,OE,OC,∵AD,BC,CD是⊙O的切线,∴OE⊥CD,AD=DE,BC=CE,∴S△AOD=S△ODE,S△OBC=S△COE,∴S△COD=××(3+12)×12=1.【题目点拨】本题考查了圆切线的综合问题,掌握切线长定理、勾股定理、一元二次方程的解法是解题的关键.23、(1)120份;(2)48,图见解析;(3);(4)240份【分析】(1)利用共抽取作品数等级数对应的百分比求解即可,(2)求出抽取的作品中等级为的作品数,即可作图,(3)利用等级为的扇形圆心角的度数等级为的扇形圆心角的百分比求解即可,(4)利用该校共征集到800份作品乘等级为的作品的百分比即可.【题目详解】解:(1)(份),答:一共抽取了120份作品.(2)此次抽取的作品中等级为的作品数份,如图,故答案为:48.(3),故答案为:.(4),(份)答:估计等级为级的作品约有240份.【题目点拨】本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是读懂统计图,能从统计图中获得准确的信息.24、【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【题目详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=BC=5,∴AD,在Rt△ABD中,∴tanB.【题目点拨】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.25、(1)y=﹣x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑光伏系统施工合同示范文本2篇
- 创意行业如何用汇报展现创新点
- 中心静脉导管在手术室的应用与维护
- 个人管理与时间管理技巧汇报讲解
- 2024年房产买卖合同延长协议3篇
- 2024年度营销中心室内装潢工程合同版B版
- 2024年家具涂装工程承包合同2篇
- 中国文化在全球化中的地位和影响
- 2024年度商务用车租赁承包合同2篇
- 2024年度深圳新能源汽车车牌租赁合作协议范本3篇
- 湘少版小学英语单词(含默写版)
- 地基基础检测题库(104道)
- 小学二年级数学小故事(十六篇)
- 山东工业技师学院招聘真题
- (完整版)年处理100t中药车间设计
- 宣布干部任命简短讲话3篇
- 查理芒格100个思维模型
- 【建设项目施工现场安全管理问题及对策研究(任务书+开题报告+论文)16000字】
- 小班美术雪花飘飘
- 微信支付交易明细证明账单文件修改
- 螺栓知识培训课件
评论
0/150
提交评论