版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省江阴市暨阳中学数学九年级第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.函数与抛物线的图象可能是().A. B. C. D.2.已知,那么下列等式中,不一定正确的是()A. B. C. D.3.如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①;②;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A.1个 B.2个 C.3个 D.4个4.在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是()A.1 B. C. D.5.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为,则的值为()A. B. C. D.6.在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.7.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔8.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A. B. C. D.9.sin30°等于()A. B. C. D.10.把多项式分解因式,结果正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.12.如图,抛物线向右平移个单位得到抛物线___________.13.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)14.如果关于的一元二次方程的一个解是,则________.15.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.16.中国古代数学著作《九章算术》中记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”译文为:已知长方形门的高比宽多6.8尺,门的对角线长为10尺,那么门的高和宽各是多少尺?设长方形门的宽为尺,则可列方程为___________.17.方程(x﹣3)(x+2)=0的根是_____.18.抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为_____.三、解答题(共66分)19.(10分)如图,在中,,.,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点,.(1)求的长.(2)若点是线段的中点,求的值.20.(6分)如图,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为9m,请你计算DE的长.21.(6分)如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.22.(8分)如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.23.(8分)解下列方程:(1)(y﹣1)2﹣4=1;(2)3x2﹣x﹣1=1.24.(8分)如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.25.(10分)如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.26.(10分).如图,小明在大楼的东侧A处发现正前方仰角为75°的方向上有一热气球在C处,此时,小亮在大楼的西侧B处也测得气球在其正前方仰角为30°的位置上,已知AB的距离为60米,试求此时小明、小亮两人与气球的距离AC和BC.(结果保留根号)
参考答案一、选择题(每小题3分,共30分)1、C【分析】一次函数和二次函数与y轴交点坐标都是(0,1),然后再对a分a>0和a<0讨论即可.【题目详解】解:由题意知:与抛物线与y轴的交点坐标均是(0,1),故排除选项A;当a>0时,一次函数经过第一、二、三象限,二次函数开口向上,故其图像有可能为选项C所示,但不可能为选项B所示;当a<0时,一次函数经过第一、二、四象限,二次函数开口向下,不可能为为选项D所示;故选:C.【题目点拨】本题考查了一次函数与二次函数的图像关系,熟练掌握函数的图像与系数之间的关系是解决本类题的关键.2、B【分析】根据比例的性质作答.【题目详解】A、由比例的性质得到3y=5x,故本选项不符合题意.
B、根据比例的性质得到x+y=8k(k是正整数),故本选项符合题意.
C、根据合比性质得到,故本选项不符合题意.
D、根据等比性质得到,故本选项不符合题意.
故选:B.【题目点拨】此题考查了比例的性质,解题关键在于需要掌握内项之积等于外项之积、合比性质和等比性质.3、D【解题分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【题目详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【题目点拨】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.4、C【解题分析】结合题意求得箱子中球的总个数,再根据概率公式即可求得答案.【题目详解】依题可得,箱子中一共有球:(个),∴从箱子中任意摸出一个球,是白球的概率.故答案为:C.【题目点拨】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5、D【分析】过点C作CD⊥x轴交于点D,连接OC,则CD∥OB,得AO=OD,CD=2OB,进而得的面积为4,即可得到答案.【题目详解】过点C作CD⊥x轴交于点D,连接OC,则CD∥OB,∵,∴AO=OD,∴OB是∆ADC的中位线,∴CD=2OB,∵的面积为,∴的面积为4,∵点在反比例函数的图象上,∴k=2×4=8,故选D.【题目点拨】本题主要考查反比例函数比例系数k的几何意义,添加辅助线,求出的面积,是解题的关键.6、B【分析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【题目详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【题目点拨】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.7、D【解题分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【题目详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【题目详解】∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC=.故选A.【题目点拨】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.9、B【解题分析】分析:根据特殊角的三角函数值来解答本题.详解:sin30°=.故选B.点睛:本题考查了特殊角的三角函数值,特殊角三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.10、B【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:;完全平方公式:;【题目详解】解:,故选B.【题目点拨】本题考查了分解因式,熟练运用平方差公式是解题的关键二、填空题(每小题3分,共24分)11、1【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【题目详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案为1.【题目点拨】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.12、【分析】先确定抛物线的顶点坐标为(0,2),再利用点平移的规律得到点(0,2)平移后所得对应点的坐标为(1,2),然后根据顶点式可得平移后的抛物线的解析式.【题目详解】解:抛物线的顶点坐标为(0,2),把点(0,2)向右平移1个单位所得对应点的坐标为(1,2),∴平移后的抛物线的解析式是:;故答案为.【题目点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【题目详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【题目点拨】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;14、1【分析】利用一元二次方程解的定义得到,然后把变形为,再利用整体代入的方法计算.【题目详解】把代入方程得:,
∴,
∴.
故答案为:1.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【题目详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【题目点拨】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.16、【分析】先用表示出长方形门的高,然后根据勾股定理列方程即可.【题目详解】解:∵长方形门的宽为尺,∴长方形门的高为尺,根据勾股定理可得:故答案为:.【题目点拨】此题考查的是一元二次方程的应用和勾股定理,根据勾股定理列出方程是解决此题的关键.17、x=3或x=﹣1.【解题分析】由乘法法则知,(x﹣3)(x+1)=0,则x-3=0或x+1=0,解这两个一元一次方程可求出x的值.【题目详解】∵(x﹣3)(x+1)=0,∴x-3=0或x+1=0,∴x=3或x=﹣1.故答案为:x=3或x=﹣1.【题目点拨】本题考查了解一元二次方程因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了数学转化思想.18、y=﹣+1【分析】直接根据平移规律作答即可.【题目详解】解:抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为y=﹣x2+1,故答案为:y=﹣x2+1.【题目点拨】本题考查了函数图像的平移.要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.三、解答题(共66分)19、(1);(2).【解题分析】(1)求出,在Rt△ADC中,由三角函数得出;(2)由三角函数得出BC=AC•tan60°=,得出,证明△DFM≌△AGM(ASA),得出DF=AG,由平行线分线段成比例定理得出,即可得出答案.【题目详解】解:(1)∵平分,,∴,在中,,(2)∵∠C=90°,AC=6,∠BAC=60°,∴,∴,∵DE∥AC,∠DMF和∠AMG是对顶角,∴∠FDM=∠GAM,∠DMF=∠AMG,∵点M是线段AD的中点,∴,∵,∴,∴.由DE∥AC,得,∴,∴;【题目点拨】本题主要考查了全等三角形的性质与判定,特殊角的三角函数值,掌握全等三角形的性质与判定,特殊角的三角函数值是解题的关键.20、(1)见解析;(2)13.5m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【题目详解】解:(1)如图所示:EF即为所求;(2)∵AB=6m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长为9m,∴=,解得:DE=13.5m,答:DE的长为13.5m.【题目点拨】此题主要考查相似三角形的判定与性质,解题法的关键是熟知平行线的性质.21、(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=.【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角形的性质得到AF=BF=BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=4,由∠ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【题目详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD==12,∴在Rt△BDA中,AB==4,∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴=,∴=,∴BC=,∴⊙O的直径BC=.【题目点拨】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.22、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).【分析】(1)由抛物线的对称轴为直线x=3,利用二次函数的性质即可求出a值,进而可得出抛物线的解析式,再利用二次函数图象上点的坐标特征,即可求出点A、B的坐标;(2)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,假设存在,设点P的坐标为(x,),过点P作PD//y轴,交直线BC于点D,则点D的坐标为(x,),PD=-x2+2x,利用三角形的面积公式即可得出三角形PBC的面积关于x的函数关系式,再利用二次函数的性质即可解决最值问题;(3)设点M的坐标为(m,),则点N的坐标为(m,),进而可得出MN,结合MN=3即可得出关于m的含绝对值符号的一元二次方程,解之即可得出结论.【题目详解】(1)抛物线的对称轴是直线,,解得:,抛物线的解析式为.当时,,解得:,,点的坐标为,点的坐标为.(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是16.,存在点,使的面积最大,最大面积是16.(3)设点的坐标为,则点的坐标为,.又,.当时,有,解得:,,点的坐标为或;当或时,有,解得:,,点的坐标为,或,.综上所述:点的坐标为,、、或,.【题目点拨】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出关于x的函数关系式;(3)根据MN的长度,找出关于m的含绝对值符号的一元二次方程.23、(1)y1=3,y2=﹣1;(2)x1=,x2=.【分析】(1)先移项,然后利用直接开方法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【题目详解】解:(1)(y﹣1)2﹣4=1,(y﹣1)2=4,y﹣1=±2,y=±2+1,y1=3,y2=﹣1;(2)3x2﹣x﹣1=1,a=3,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×3×(﹣1)=13>1,x=,x1=,x2=.【题目点拨】此题考查的是解一元二次方程,掌握利用直接开方法和公式法解一元二次方程是解决此题的关键.24、(1)32;(2)5;(3)D(10,0)或(,0).【分析】(1)先把A(4,n)代入y=2x,求出n的值,再把A(4,8)代入y=求出k的值即可;(2)设AC=x,则OC=x,BC=8﹣x,由勾股定理得:OC2=OB2+BC2,即可求出x的值;(3)设点D的坐标为(x,0),分两种情况:①当x>4时,②当0<x<4时,根据三角形的面积公式列式求解即可.【题目详解】解(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(4,n),∴n=2×4=8,∴A(4,8),∴k=4×8=32,∴反比例函数为y=.(2)设AC=x,则OC=x,BC=8﹣x,由勾股定理得:OC2=OB2+BC2,∴x2=42+(8﹣x)2,x=5,∴AC=5;(3)设点D的坐标为(x,0)分两种情况:①当x>4时,如图1,∵S△OCD=S△ACD,∴OD•BC=AC•BD,3x=5(x﹣4),x=10,②当0<x<4时,如图2,同理得:3x=5(4﹣x),x=,∴点D的坐标为(10,0)或(,0).【题目点拨】本题考查了一次函数图像上点的特征,待定系数法求反比例函数解析式,勾股定理,坐标与图形的性质及分类讨论的数学思想,熟练掌握待定系数法及坐标与图形的性质是解答本题的关键.25、(1)详见解析;(2)图详见解析,12;(3).【分析】(1)如图1,延长EG交DC的延长线于点H,由“AAS”可证△CGH≌△BGE,可得GE=GH,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年云南客运资格证模拟考试下载什么软件
- 2024年银川客运驾驶员应急处置培训
- 工程项目管理模板-工程环境报验单、工程材料设备配件报审表、工程阶段性测试验收初验终验报审表
- 电视剧制作监制聘请合同
- 体育赛事合同风险控制
- 旅游服务信息化管理策略
- 主题宴会酒店场地租赁协议
- 水厂应急供水设施建设合同
- 网络安全评估服务承诺书
- 学校教职工行为规范
- 【川教版】《生命 生态 安全》四上第13课《预防冻疮》课件
- 结构力学试卷西南交通大学期中答案期中考试
- 截肢幻肢痛心理护理
- 广东省佛山市2022-2023学年高二上学期期末数学试题(学生版+解析)
- 药疹的健康宣教
- 矿井水害综合监测预警系统通用技术条件
- 财务管理的财务财务数字化转型
- 直线与圆的位置关系-省赛一等奖
- 糖尿病治疗效果的药物经济学研究
- 生殖中心胚胎室出科小结
- 湖南盐业公司招聘考试试题
评论
0/150
提交评论