版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省明光市明光镇映山中学数学九年级第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形,它们分别是△P1A1O、△P2A2O、△P3A30,设它们的面积分别是S1、S2、S3,则()A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S1=S2=S32.如图,如果从半径为6cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.2cm B.4cm C.6cm D.8cm3.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠ABB′的度数是()A.35° B.40° C.45° D.55°4.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形5.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>07.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米8.如图,正方形ABCD和正方形CGFE的顶点C,D,E在同一条直线上,顶点B,C,G在同一条直线上.O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接FH交EG于点M,连接OH.以下四个结论:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④9.一种商品原价元,经过两次降价后每盒26元,设两次降价的百分率都为,则满足等式()A. B. C. D.10.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.0二、填空题(每小题3分,共24分)11.一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共______人.12.如图,某海防响所发现在它的西北方向,距离哨所400米的处有一般船向正东方向航行,航行一段时间后到达哨所北偏东方向的处,则此时这般船与哨所的距离约为________米.(精确到1米,参考数据:,)13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括1).14.若,则=______.15.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为_______.16.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)17.如图是二次函数y=ax2﹣bx+c的图象,由图象可知,不等式ax2﹣bx+c<0的解集是_______.18.已知线段a=4,b=9,则a,b的比例中项线段长等于________.三、解答题(共66分)19.(10分)已知关于x的方程ax2+(3﹣2a)x+a﹣3=1.(1)求证:无论a为何实数,方程总有实数根.(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=时,求出a的值.20.(6分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.21.(6分)已知:如图,在四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,AE⊥BD,垂足为E.(1)求证:△ABE∽△DBC;(2)若AD=25,BC=32,求线段AE的长.22.(8分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.23.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?24.(8分)(1)(x-5)2-9=0(2)x2+4x-2=025.(10分)如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.证明EF是的切线;求证:;已知圆的半径,,求GH的长.26.(10分)已知二次函数y=ax2+bx+3的图象经过点(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?
参考答案一、选择题(每小题3分,共30分)1、D【分析】由于P1、P2、P3是同一反比例图像上的点,则围成的三角形虽然形状不同,但面积均为.【题目详解】根据反比例函数的k的几何意义,△P1A1O、△P2A2O、△P3A3O的面积相同,均为,所以S1=S2=S3,故选D.【题目点拨】本题考查反比例函数系数k的几何意义,过同一反比例上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,而围成的三角形的面积为,本知识点是中考的重要考点,应高度关注.2、B【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【题目详解】解:∵从半径为6cm的圆形纸片剪去圆周的一个扇形,∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长=,∴圆锥的底面半径cm;故选:B.【题目点拨】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.3、D【解题分析】在△ABB'中根据等边对等角,以及三角形内角和定理,即可求得∠ABB'的度数.【题目详解】由旋转可得,AB=AB',∠BAB'=70°,∴∠ABB'=∠AB'B=(180°-∠BAB′)=55°.故选:D.【题目点拨】本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键.4、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【题目详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.5、A【解题分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可:①∵2>0,∴图象的开口向上,故本说法错误;②图象的对称轴为直线x=3,故本说法错误;③其图象顶点坐标为(3,1),故本说法错误;④当x<3时,y随x的增大而减小,故本说法正确.综上所述,说法正确的有④共1个.故选A.6、B【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【题目详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,故选B.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.7、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【题目详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【题目点拨】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.8、A【分析】由四边形ABCD和四边形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,从而得GH⊥BE;由GH是∠EGC的平分线,得出△BGH≌△EGH,再由O是EG的中点,利用中位线定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因为O为EG的中点,所以OH=OG=OE,得出点H在正方形CGFE的外接圆上,根据圆周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,从而证得△EHM∽△GHF;设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,从而求得,设正方形ECGF的边长是2b,则EG=2b,得到HO=b,通过证得△MHO∽△MFE,得到,进而得到,进一步得到.【题目详解】解:如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;∵△EHG是直角三角形,O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正确;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中点,∴HO∥BG,∴△DHN∽△DGC,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正确;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位线,∴HO=BG,∴HO=EG,设正方形ECGF的边长是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④错误,故选A.【题目点拨】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.9、C【分析】等量关系为:原价×(1-下降率)2=26,把相关数值代入即可.【题目详解】解:第一次降价后的价格为45(1-x),
第二次降价后的价格为45(1-x)·(1-x)=45(1-x)2,
∴列的方程为45(1-x)2=26,
故选:C.【题目点拨】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10、A【解题分析】根据一元二次方程一次项系数的定义即可得出答案.【题目详解】由一元二次方程一次项系数的定义可知一次项系数为﹣1,故选:A.【题目点拨】本题考查的是一元二次方程的基础知识,比较简单,需要熟练掌握.二、填空题(每小题3分,共24分)11、1【解题分析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数﹣1)=72,把相关数值代入计算即可.【题目详解】设这小组有x人.由题意得:x(x﹣1)=72解得:x1=1,x2=﹣8(不合题意,舍去).即这个小组有1人.故答案为:1.【题目点拨】本题考查了一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键,注意理解答本题中互送的含义,这不同于直线上点与线段的数量关系.12、566【分析】通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【题目详解】设与正北方向线相交于点,根据题意,所以,在中,因为,所以,中,因为,所以(米).故答案为566.【题目点拨】考查了解直角三角形的应用-方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.13、9或2或3.【解题分析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为9或2或3.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.14、【题目详解】设x=2k.y=3k,(k≠0)∴原式=.故答案是:15、【解题分析】设DE=x,则OE=2x,根据矩形的性质可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的长为.【题目详解】∵四边形ABCD是矩形∴OC=AC=BD=OD设DE=x,则OE=2x,OC=OD=3x,∵,∴∠OEC=90°在直角三角形OEC中=5∴x=即DE的长为.故答案为:【题目点拨】本题考查的是矩形的性质及勾股定理,掌握矩形的性质并灵活的使用勾股定理是解答的关键.16、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【题目详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【题目点拨】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.17、x<-1或x>1【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x的取值范围即可.【题目详解】解:由对称性得:抛物线与x轴的另一个交点为(-1,0),
∴不等式ax2﹣bx+c<0的解集是:x<-1或x>1,
故答案为:x<-1或x>1.【题目点拨】本题考查了二次函数与不等式组,二次函数的性质,此类题目,利用数形结合的思想求解是解题的关键.18、1【分析】根据比例中项的定义,列出比例式即可求解.【题目详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,
∴,即,解得,(不合题意,舍去)
故答案为:1.【题目点拨】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.三、解答题(共66分)19、(1)见解析;(2)﹣2或2【分析】(1)证明一元二次方程根的判别式恒大于等于1,即可解答;(2)根据一元二次方程根与系数的关系,以及,由|x1﹣x2|=即可求得a的值.【题目详解】(1)证明:∵关于x的方程ax2+(3﹣2a)x+a﹣3=1中,△=(3﹣2a)2﹣4a(a﹣3)=9>1,∴无论a为何实数,方程总有实数根.(2)解:如果方程的两个实数根x1,x2,则,∵,∴,解得a=±2.故a的值是﹣2或2.【题目点拨】本本题考查了一元二次方程的判别式和根与系数的关系,解决本题的关键是正确理解题意,熟练掌握一元二次方程的判别式和根与系数之间的关系.20、(1)见解析;(2)MN=2.【解题分析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【题目详解】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN==2.【题目点拨】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.21、(1)证明见解析;(2)1【分析】(1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又因为∠AEB=∠C=90°,所以可证△ABE∽△DBC;
(2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE即可.【题目详解】(1)证明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得,
∵AB=AD=25,BC=32,
∴,
∴BE=20,
∴AE==1.【题目点拨】此题考查相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质及勾股定理解题.22、(1)证明见详解;(2);(3)30°或45°.【分析】(1)由题意:∠E=90°-∠ADE,证明∠ADE=90°-∠C即可解决问题.(2)延长AD交BC于点F.证明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因为△ABC与△ADE相似,∠DAE=90°,所以∠ABC中必有一个内角为90°因为∠ABC是锐角,推出∠ABC≠90°.接下来分两种情形分别求解即可.【题目详解】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②当∠C=∠DAE=90°时,∠E=∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°;综上所述,∠ABC=30°或45°.【题目点拨】本题属于相似形综合题,考查相似三角形的判定和性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题.23、【解题分析】求出弧BC的长度,即圆锥底面圆的周长,继而可求出底面圆的半径.【题目详解】解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,∴AO=OC=,则AC=,弧BC的长=则2πR=,解得:R=.故该圆锥的底面圆的半径是m.【题目点拨】本题考查了弧长的计算、圆周长的计算公式,牢牢掌握这些计算公式是解答本题的关键.24、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 柴油发电机远程监控管理方案
- 机械臂运动变频软启方案
- 数据中心建设施工方案
- 山东省德州市优高联盟九校2024-2025学年高三上学期10月联考物理试题(解析版)
- 天然气管道穿越施工风险监测方案
- 广东省广州市海珠区联考2024-2025学年六年级上学期11月期中英语试题
- 工程总承包中的勘察合同(2篇)
- 襄阳2024年01版小学6年级英语第六单元真题试卷
- 实习生劳动合同终止协议书
- 智能制造EPC总承包采购方案
- 2024二十届三中全会知识竞赛题库及答案
- 消化系统常见疾病课件(完美版)
- 医院检验外包服务项目招标文件
- 档案整理及数字化服务方案
- 脚本理论观照下的电影字幕翻译
- 水墨风阅读古典小说水浒传课程PPT专题课件
- 步兵班战术教案(全)
- 机场跑道和停机坪施工工艺工法
- 注塑件生产成型质量控制计划
- 枸杞多糖的提取与分离
- 机构编制重要法规文件汇编
评论
0/150
提交评论