版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用构造法求数列的通项公式求数列的通项公式是高考重点考查的内容,作为两类特殊数列----等差数列·等比数列可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,之后再应用各自的通项公式求解,体现化归思想在数列中的具体应用例1:(06年福建高考题)数列()A.B.C.D.解法1:又是首项为2公比为2的等比数列,所以选C解法2归纳总结:若数列满足为常数),则令来构造等比数列,并利用对应项相等求的值,求通项公式。例2:数列中,,则。解:为首项为2公比也为2的等比数列。,(n>1)n>1时显然n=1时满足上式小结:先构造等比数列,再用叠加法,等比数列求和求出通项公式,例3:已知数列中求这个数列的通项公式。解:又形成首项为7,公比为3的等比数列,则………①又,,形成了一个首项为—13,公比为—1的等比数列则………②①②小结:本题是两次构造等比数列,属于构造方面比较级,最终用加减消元的方法确定出数列的通项公式。例4:设数列的前项和为成立,(1)求证:是等比数列。(2)求这个数列的通项公式证明:(1)当又………①………②②—①当时,有公式提供方便,一切问题可迎刃而解。解:。所以所以为等差数列,其首项为0,公差为1;例9:数列中,若,,则A.B.C.D.解:又是首项为公差3的等差数列。所以选A变式题型:数列中,,求解:是首项为公比为的等比数列小结:且为一次分式型或构造出倒数成等差数列或构造出倒数加常数成等比数列,发散之后,两种构造思想相互联系,相互渗透,最后融合到一起。总之,构造等差数列或等比数列来求数列的通项公式,是求通项公式的重要方法也是高考重点考查的思想,当然题是千变万化的,构造方式也会跟着千差万别,要具体问题具
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外来物种对生态影响评估方案
- 山东省济宁市曲阜市2022-2023学年九年级上学期期末语文试题
- 2024年名人讲座经纪合同
- 2024年修订版木材购销协议
- 企业年会服务合同协议
- 2024年国际进出口业务协议要览
- 2024年国际采购代理居间合同
- 2024年微粉碎、超微粉碎设备项目提案报告模范
- 2024年锂电池配套试剂项目提案报告模范
- 2024年德州道路旅客运输从业资格证模拟试题
- 2024-2025学年八年级上学期地理期中模拟试卷(湘教版+含答案解析)
- GB/T 22838.6-2024卷烟和滤棒物理性能的测定第6部分:硬度
- 期中测试(二)-2024-2025学年语文六年级上册统编版
- 期中 (试题) -2024-2025学年译林版(三起)英语四年级上册
- 2024年专技人员公需科目考试答
- SL/T212-2020 水工预应力锚固技术规范_(高清-有效)
- 行政法对宪法实施的作用探讨
- 檩条规格选用表
- 群青生产工艺过程
- 重拾作文ppt课件
- (整理)直流DF0241-JC-DL用户手册
评论
0/150
提交评论