山西省吕梁市方山中学高二数学文测试题含解析_第1页
山西省吕梁市方山中学高二数学文测试题含解析_第2页
山西省吕梁市方山中学高二数学文测试题含解析_第3页
山西省吕梁市方山中学高二数学文测试题含解析_第4页
山西省吕梁市方山中学高二数学文测试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市方山中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279参考答案:B由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有9×10×10=900,组成无重复数字的三位数共有9×9×8=648,因此组成有重复数字的三位数共有900-648=252.2.如图,在正方体ABCD﹣A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行 C.垂直 D.不能确定参考答案:B【考点】LP:空间中直线与平面之间的位置关系.【分析】由于CD⊥平面B1BCC1,所以是平面B1BCC1的法向量,因此只需证明向量与垂直即可,而与和均垂直,而和又可以作为一组基底表示向量,因此可以证明.【解答】解:∵正方体棱长为a,A1M=AN=,∴=,=,∴=++=++=(+)++(+)=+.又∵是平面B1BCC1的法向量,且?=(+)?=0,∴⊥,∴MN∥平面B1BCC1.故选B3.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件

产品来检查,至少有两件一等品的种数是()

A.

B.

C.

D.参考答案:D4.已知实数,则满足不等式的概率为(

)A. B. C. D.参考答案:D【分析】在坐标平面中画出基本事件的总体和随机事件中包含的基本事件对应的平面区域,算出它们的面积后可得所求的概率.【详解】基本事件的总体对应的不等式组为,设为“不等式成立”,它对应的不等式组为前者对应的平面区域为正方形边界及其内部,后者对应的平面区域为四边形及其内部(阴影部分),故,故选D.【点睛】几何概型的概率计算关键在于测度的选取,测度通常是线段的长度、平面区域的面积、几何体的体积等.5.若函数在区间内是增函数,则实数的取值范围是(

)A

B

C

D

参考答案:C6.一个球的外切正方体的全面积等于6cm2,则此球的体积为()

A.B.C.D.参考答案:C7.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A.16π

B.20π

C.24π

D.32π参考答案:C8.已知,则下列结论不正确的是(

) A.a2<b2 B.ab<b2 C. D.|a|+|b|>|a+b|参考答案:D略9.对于函数f(x)=x图象上的任一点M,在函数g(x)=lnx上都存在点N(x0,y0),使是坐标原点),则x0必然在下面哪个区间内?()A. B. C. D.参考答案:C【考点】对数函数的图象与性质.【分析】问题转化为x0是函数h(x)=x+lnx的零点,根据函数的零点的判断定理求出x0的范围即可.【解答】解:由题意得:==﹣1,即lnx0+x0=0,即x0是函数h(x)=x+lnx的零点,由h(x)在(0,+∞)是连续的递增函数,且h()=﹣1+<0,h()=>0,得h(x)在(,)有零点,即x0∈(,),故选:C.10.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a,b不能被5整除 D.a,b有1个不能被5整除参考答案:B【考点】R9:反证法与放缩法.【分析】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.二、填空题:本大题共7小题,每小题4分,共28分11.将直线l1:nx+y-n=0、l2:x+ny-n=0(n∈N*,n≥2)与x轴、y轴围成的封闭图形的面积记为Sn,则Sn的最小值为________.参考答案:12.复数的共轭复数是

。参考答案:略13.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒.当你到达路口时,看见红灯的概率是

.参考答案:【考点】几何概型.【专题】计算题.【分析】本题是一个那可能事件的概率,试验发生包含的事件是总的时间长度为30+5+40秒,满足条件的事件是红灯的时间为30秒,根据等可能事件的概率得到答案.【解答】解:由题意知本题是一个那可能事件的概率,试验发生包含的事件是总的时间长度为30+5+40=75秒,设红灯为事件A,满足条件的事件是红灯的时间为30秒,根据等可能事件的概率得到出现红灯的概率.故答案为:.【点评】本题考查等可能事件的概率,是一个由时间长度之比确定概率的问题,这是几何概型中的一类题目,是最基础的题.14.设等比数列的公比,前项和为,则________.参考答案:1515.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:

则表中的

。参考答案:6

0.45

略16.观察下表:12343456745678910......则第______行的各数之和等于.参考答案:100617.若方程表示圆,则实数t的取值范围是.参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,α∩β=m,bα,cβ,b∩m=A,c∥m求证:b,c是异面直线参考答案:证明:假设与共面,则或与相交.①若,由得,平行,这与矛盾②若,∵,,故,,故必在、的交线上,即与相交于点,这与矛盾,故也与不相交.综合①②知与是异面直线.19.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.参考答案:【考点】HQ:正弦定理的应用;HS:余弦定理的应用.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.【点评】本题主要考查正弦定理和余弦定理的应用.在解三角形中正余弦定理应用的很广泛,一定要熟练掌握公式.20.(10分)(1)某校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部,请画出学生会的组织结构图。(2)已知复数,,求参考答案:(1)学生会的组织结构图如下:

5分(2)

5分略21.已知函数,.(1)当时,求函数在上的极值;(2)若,求证:当时,.(参考数据:)参考答案:(1)极小值为,无极大值;(2)证明见解析.(2)构造函数,∴在区间上单调递增,∵,,∴在区间上有唯一零点,∴,即,由的单调性,有,构造函数在区间上单调递减,∵,∴,即,∴,∴.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性与极值.【方法点晴】本题主要考查了利用导数研究曲线上某点切线方程、利用导数研究函数的单调性与极值与最值,其中解答中涉及到不等式的求解、构造新函数等知识的综合应用,解答中根据题意构造新函数,求解新函数的单调性与极值(最值)是解答的关键,着重考查了转化与化归思想,以及综合运用知识分析问题和解答问题的能力,此类问题注意认真体会二次求导的应用,平时注重总结和积累,试题有一定的难度,属于难题.22.已知数列中,,当时,.(Ⅰ)证明数列是一个等差数列;(Ⅱ)求.参考答案:解:(1)当n=1时,S1=a1=1……2分当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论