版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
风电控制需要控制哪些部分?涉及到哪些自动化产品?哪位高人能介绍一下。听说是用超小型PLC,不知控制哪些参数.超小型PLC?与现在我们用的PLC有什么样的差别。我看过金风的风机控制,用的是300系列的315-DP的cpu,他们现在实现的主要是安全保护方面的功能。调节控制方面做得不好。风电控制主要有四块:主控器、变频、偏航、变桨四大块。主控器核心部件PLC(或等同于PLC功能),有专用的,也有通用的,据说沈阳工大是西门子的300。国外的没有解剖过……有知道的请补充……1、运行状态的控制2、刹车停机控制3、偏航控制4、加热和冷却控制5、液压系统控制6、变桨控制金风科技的一个部门经理给我讲的是超小型PLC。也许大型的系统是用300的。超小型?用来干什么的?主控单元肯定不会用超小型PLC。目前大多采用IPC,超小型PLC不可能用于调节控制,做一些辅助控制还可以。应该叫做超小型PC吧!?呵呵!风力发电机控制系统风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。控制系统的组成风力发电控制系统的基本目标分为三个层次:这就是保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。当然对于不同类型的风力发电机控制单元会不相同。控制系统结构示意图如下:针对上述结构,目前绝大多数风力发电机组的控制系统都采用集散型或称分布式控制系统(DCS)工业控制计算机。采用分布式控制最大优点是许多控制功能模块可以直接布置在控制对象的位置。就地进行采集、控制、处理。避免了各类传感器、信号线与主控制器之间的连接。同时DCS现场适应性强,便于控制程序现场调试及在机组运行时可随时修改控制参数。并与其他功能模块保持通信,发出各种控制指令。目前计算机技术突飞猛进,更多新的技术被应用到了DCS之中。PLC是一种针对顺序逻辑控制发展起来的电子设备,目前功
能上有较大提高。很多厂家也开始采用PLC构成控制系统。现场总线技术(FCS)在进入九十年代中期以后发展也十分迅猛,以至于有些人已做出预测:基于现场总线的FCS将取代DCS成为控制系统的主角。控制系统技术风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。同时,风力资源丰富的地区通常都是边远地区或是海上,分散布置的风力发电机组通常要求能够无人值班运行和远程监控,这就对风力发电机组的控制系统的自动化程度和可靠性提出了很高的要求。与一般工业控制过程不同,风力发电机组的控制系统是综合性控制系统。它不仅要监视电网、风况和机组运行参数,对机组运行进行控制。而且还要根据风速与风向的变化,对机组进行优化控制,以提咼机组的运行效率和发电量。20世纪80年代中期开始进入风力发电市场的定桨距风力发电机组,主要解决了风力发电机组的并网问题和运行的安全性与可靠性问题,采用了软并网技术、空气动力刹车技术、偏航与自动解缆技术,这些都是并网运行的风力发电机组需要解决的最基本的问题。由于功率输出是由桨叶自身的性能来限制的,桨叶的节距角在安装时已经固定;而发电机转速由电网频率限制。因此,只要在允许的风速范围内,定桨距风力发电机组的控制系统在运行过程中对由于风速变化引起输出能量的变化是不作任何控制的。这就大大简化了控制技术和相应的伺服传动技术,使得定桨距风力发电机组能够在较短时间内实现商业化运行。20世纪90年代开始,风力发电机组的可靠性已经大大提高,变桨距风力发电机组开始进入风力发电市场。采用全变桨距的风力发电机组,起动时可对转速进行控制,并网后可对功率进行控制,使风力机的起动性能和功率输出特性都有显著改善。由风力发电机组的变桨距系统组成的闭环控制系统,使控制系统的水平提高到一个新的阶段。由于变距风力发电机组在额定风速以下运行时的效果仍不理想,到了20世纪90年代中期,基于变距技术的各种变速风力发电机组开始进入风电场变速风力发电机组的控制系统与定速风力发电机组的控制系统的根本区别在于,变速风力发电机组是把风速信号作为控制系统的输入变量来进行转速和功率控制的。变速风力发电机组的主要特点是:低于额定风速时,它能跟踪最佳功率曲线,使风力发电机组具有最咼的风能转换效率;咼于额定风速时,它增加了传动系统的柔性,使功率输出更加稳定。特别是解决了高次谐波与功率因数等问题后,使供电效率、质量有所提高。随着计算机技术与先进的控制技术应用到风电领域,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展。目前的控制方法是:当风速变化时通过调节发电机电磁力矩或风力机浆距角使叶尖速比保持最佳值,实现风能的最大捕获。控制方法基于线性化模型实现最佳叶尖速比的跟踪,利用风速测量值进行反馈控制,或电功率反馈控制。但在随机扰动大、不确定因素多、非线性严重的风电系统,传统的控制方法会产生较大误差。因此近些年国内外都开展了这方面的研究。一些新的控制理论开始应用于风电机组控制系统。如采用模糊逻辑控制、神经网络智能控制、鲁棒控制等。使风机控制向更加智能方向发展。控制系统的类型对于不同类型的风力发电机,控制单元会有所不同,但主要是因为发电机的结构或类型不同而使得控制方法不同,加上定桨距和变桨距,形成多种结构和控制方案。根据浆叶的不同,分为以下三种:1、定桨距失速调节型风力发电机组定桨距是指桨叶与轮毂的连接是固定的,即当风速变化时,桨叶的迎风角度不能随之变化。失速是指桨叶本身所具有的失速特性,当风速高于额定风速时,气流将在桨叶的表面产生涡流,使效率降低,产生失速,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高一些发电机的运行效率。定桨失速调节型的优点是失速调节由指桨叶本身完成,简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。但是在输入变化的情况下,风力发电机组只有很小的机会能运行在最佳状态下,因此机组的整体效率较低。通常很少应用在兆瓦级以上的大型风力机上。2、变桨距调节型风力发电机组变奖距是指安装在轮毂上的叶片通过控制可以改变其桨距角的大小。在运行过程中,当输出功率小于额定功率时,桨距角保持在0。位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。此时控制系统参与调节,形成闭环控制。3、主动失速调节型风力发电机组将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值上。由于功率曲线在失速范围的变化率比失速前要低得多,控制相对容易,输出功率也更加平稳。根据风机转速分有恒速恒频和变速恒频两种,恒速恒频机组的整体效率较低,而变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。变速恒频的优点是大范围内调节运行转速,来适应因风速变化而引起的风力机功率的变化,可以最大限度的吸收风能,因而效率较高。控制上也很灵活,可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂。变速恒频又根据发电机的不同分为以下几种:1异步感应发电机通过晶闸管控制的软并网装置接入电网,并网冲击电流较大。另外需要电容无功补偿装置。控制电路简单。各大风力发电制造商如:Vestas,NEG,Micon,Nordex都有此类产品。2绕线转子异步发电机对于绕线转子异步发电机可以采用功率辅助调节方式,即转子电流控制(RCC)方式来配合变浆距机构,共同完成发电机输出功率的调节。在绕线转子输入由电力电子装置控制的发电机转子电流,可以加大异步发电机转差率(可到10%),使得发电机在较大的转速范围内向电网送电。以提高异步发电机的风能利用率。3双馈发电机双馈电机的结构类似于绕线式感应电机,定子绕组也由具有固定频率的对称三根电源激励,所不同的是转子绕组具有可调节频率的三相电源激励,一般采用交一交变频器或交一直一交变频器供以低频电流。双馈电机励磁可调量有三个:一是可以调节励磁电流的幅值;二是可以改变励磁电流的频率;三是可以改变励磁电流的相位.通过改变励磁频率,可调节转速.这样在负荷突然变化时,迅速改变电机的转速,充分利用转子的动能,释放和吸收负荷,对电网的扰动远比常规电机小。另外,通过调节转子励磁电流的幅值和相位,来调节有功功率和无功功率。双馈电机控制系统通过变频器的控制器对逆变电路小功率器件的控制,可以改变双馈发电机转子励磁电流的幅值、频率及相位角,达到调节其转速、有功功率和无功功率的目的。既提高了机组的效率,又对电网起到稳频、稳压的作用。下图是双馈电机控制简要框图。整个控制系统可分为:转速调整单元、有功功率调整单元和电压调整单元(无功功率调整)。它们分别接受风速和转速,有功功率、无功功率指令,并产生一个综合信号,送给励磁控制装置,改变励磁电流的幅值、频率与相位角,以满足系统的要求。由于双馈电机既可调节有功功率,又可调节无功功率,有风时,机组并网发电;无风时,也可作抑制电网频率和电压波动的补偿装置。双馈电机应用于风力发电中,可以解决风力机转速不可调。机组效率低等问题。同时,由于双馈电机对无功功率、有功功率均可调,对电网可起到稳压。稳频的作用,提高了发电质量。与同步机交一直一交系统相比,它还具有变频装置容量小(一般为发电机额定容量的10%~20%左右)、重量轻的优点。但这种结构也还存在一些问题,如控制电路复杂一些,不同的控制方法效果有一定差异。另外该结构比其他结构更容易受到电网故障的影响。目前国内有多家开发成功双馈电机控制系统,如兰州电机有限责任公司与清华大学、沈阳工业大学合作研制的兆瓦级变速恒频双馈异步风力发电系统控制设备,采用全数字化矢量控制方法。中科院电工研究所研制的兆瓦级变速恒频风电机组电控系统,该系统采用IGBT技术、双PWM双向可逆变流控制。4永磁直驱同步发电机永磁直驱同步发电机系统结构如图:由变浆距风轮机直接驱动永磁同步发电机,省去了增速用齿轮箱。发电机输出先经整流器变为直流,再经IGBT(绝缘栅双极晶体管)逆变器将电能送到电网。对风力发电机工作点的控制是通过控制逆变器送到电网的电流实现对直流环节电压的控制,从而控制风轮机的转速。发电机发出电能的频率、电压、电功率都是随着风速的变化而变化的,这样有利于最大限度地利用风能资源,而恒频恒压并网的任务则由整流逆变系统完成。除了永磁直驱同步发电机可以直接并网外,还可以构成风力发电机(群)。如ABB公司的“Windformer,采用的高压永磁直驱同步发电机(群),结构如下:单机容量为3〜5MW,输出额定电压高达20kV,频率为5〜10Hz,每一台发电机机端只配置有整流器,把交流变换为直流,通过直流母线实现与风电场其他机组:群)的并联运行,既提高了可靠性,又改进了效率。风电场由一台大容量公用逆变器把直流母线的直流电转换成50Hz的交流电,电压为12kV,可直接并入当地电网使用,也可经变压器升压至更高电压后并入更高压电网传输到远处。永磁直驱同步发电机系统存在的缺点是:对永磁材料的性能稳定性要求高,电机重量增加,IGBT逆变器的容量较大,一般要选发电机额定功率的120%以上。但使用IGBT逆变器也带来一些好处:①使用脉宽调制(PWM)获得正弦形转子电流,电机内不会产生低次谐波转矩,改善了谐波性能。②有功功率和无功功率的控制更为方便。③大功率GBT很容易驱动。④IGBT有很好的电流共享特性,这对于要达到风力发电机所需的功率水平,进行并联使用是非常必要。⑤开关时间短,导通时间不到1毫秒,关断时间小于6毫秒,使得管子功耗小。⑥目前单管容量已经较大,如Eupec公司的FZ600R65KF1等器件,可以在6kV电压下控制1.2kA电流,FZ3600R12KE3等低电压器件,可以在1.2kV电压下开关3.6kA电流。发电机控制系统除了控制发电机“获取最大能量”外,还要使发电机向电网提供高品质的电能。因此要求发电机控制系统:①尽可能产生较低的谐波电流;②能够控制功率因数;③使发电机输出电压适应电网电压的变化;④向电网提供稳定的功率。目前国内外兆瓦级以上技术较先进的、有发展前景的风力发电机组主要是双馈型风力发电机组和永磁直驱风力发电机组,二者各有优缺点。单从控制系统本身来讲,永磁直驱风力发电机组控制回路少,控制简单,但要求逆变器容量大。而双馈型风力发电机组控制回路多,控制复杂些,但控制灵活,尤其是对有功、无功的控制,而且逆变器容量小得多。双馈型风力发电机组与永磁直驱风力发电机组的综合比较:风电机的运行控制无功补偿控制由于异步发电机要从电网吸收无功功率,使风电机组的功率因数降低,而并网运行的风力发电机组一般要求其功率因数达到0.99以上,所以必须用电容器组进行无功补偿.由于风速变化的随机性,在达到额定功率前,发电机的输出功率大小是随机变化的,因此对补偿电容的投入与切除需要进行自动控制,由计算机根据输出无功功率的变化,控制补偿电容器分段投入或切除,保证功率因数达到要求。对于双馈发电机,是直接由控制系统控制和调节无功功率的。偏航与自动解缆控制自动对风正常运行时偏航控制系统自动对风,即当机舱偏离风向一定角度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,自动对风停止。自动解缆当机舱向同一方向累计偏转2.3圈后,若此时风速小于风电机组启动风速且无功率输出,则停机,控制系统使机舱反方向旋转2.3圈解绕;若此时机组有功率输出,则暂不自动解绕;若机舱继续向同一方向偏转累计达3圈时,则控制停机,解绕;若因故障自动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,自动停机;等待人工解缆操作。风轮保护当有特大强风发生时,停机并释放叶尖阻尼板,桨距调到最大,偏航90度背风,以保护风轮免受损坏。停机控制当控制器发出正常停机指令后,风电机组将按下列程序停机:①切除补偿电容器;②释放叶尖阻尼板;③发电机脱网;④测量发电机转速下降到设定值后,投入机械刹车;⑤若出现停车故障则收桨,机舱偏航如90度背风。当出现紧急停机故障时,执行如不停机操作:首先切除补偿电容器,叶尖阻尼板动作,延时0.3秒后卡钳闸动作。检测瞬时功率为负或发电机转速小于同步速时,发电机解列(脱网),若制动时间超过20秒,转速仍未降到某设定值,则收桨,机舱偏航90度背风。安全保护控制系统是风力发电机组核心部件,是风力发电机组安全运行根本保证,所以为了提高风力发电机组运行安全性,必须考虑控制系统的安全性和可靠性问题。控制系统的安全保护组成:雷电安全保护多数风机都安装在山谷的风口处、山顶上、空旷的草地、海边海岛等,易受雷击,安装在多雷雨区的风力发电机组受雷击的可能性更大,其控制系统大多为计算机和电子器件,最容易因雷电感应造成过电压损坏,因此需要考虑防雷问题。一般使用避雷器或防雷组件吸收雷电波。当雷电击中电网中的设备后,大电流将经接地点泄入地网,使接地点电位大大升高,若控制设备接地点靠近雷击大电流的入地点,则电位将随之升高,会在回路中形成共模干扰,引起过电压,严重时会造成相关设备绝缘击穿。根据国外风场的统计数据表明,风电场因雷击而损坏的主要风电机部件是控制系统和通讯系统。雷击事故中的40%〜50%涉及到风电机控制系统的损坏,15%〜25%涉及到通讯系统,15%〜20%涉及到风机叶片,5%涉及到发电机。我国一些风场统计雷击损坏的部件主要也是控制系统和监控系统的通讯部件。这说明以电缆传输的4〜20mA电流环通信方式和RS485串行通信方式由于通讯线长,分布广,部件多,最易受到雷击,而控制部件大部分是弱电器件,耐过压能力低,易造成部件损坏。防雷是一个系统工程,不能仅仅从控制系统来考虑,需要在风电场整体设计上考虑,采取多层防护措施。运行安全保护大风安全保护:一般风速达到25米/秒(10分钟)即为停机风速,机组必须按照安全程序停机,停机后,风力发电机组必须90度对风控制。参数越限保护:各种采集、监控的量根据情况设定有上、下限值,当数据达到限定值时,控制系统根据设定好的程序进行自动处理。过压过流保护:当装置元件遭到瞬间高压冲击和电流过流时所进行的保护。通常采用隔离、限压、高压瞬态吸收元件、过流保护器等震动保护:机组应设有三级震动频率保护,震动球开关、震动频率上限1、震动频率极限2,当开关动作时,控制系统将分级进行处理。开机关机保护:设计机组开机正常顺序控制,确保机组安全。在小风、大风、故障时控制机组按顺序停机。电网掉电保护风力发电机组离开电网的支持是无法工作的,一旦有突发故障而停电时,控制器的计算机由于失电会立即终止运行,并失去对风机的控制,控制叶尖气动刹车和机械刹车的电磁阀就会立即打开,液压系统会失去压力,制动系统动作,执行紧急停机。紧急停机意味着在极短的时间内,风机的制动系统将风机叶轮转数由运行时的额定转速变为零。大型的机组在极短的时间内完成制动过程,将会对机组的制动系统、齿轮箱、主轴和叶片以及塔架产生强烈的冲击。紧急停机的设置是为了在出现紧急情况时保护风电机组安全的。然而,电网故障无须紧急停机;突然停电往往出现在天气恶劣、风力较强时,紧急停机将会对风机的寿命造成一定影响。另外风机主控制计算机突然失电就无法将风机停机前的各项状态参数及时存储下来,这样就不利于迅速对风机发生的故障作出判断和处理。针对上述情况,可以在控制系统电源中加设在线UPS后备电源,这样当电网突然停电时,UPS自动投入,为风电机控制系统提供电力,使风电控制系统按正常程序完成停机过程。紧急停机安全链保护系统的安全链是独立于计算机系统的硬件保护措施,即使控制系统发生异常,也不会影响安全链的正常动作。安全链是将可能对风力发电机造成致命伤害的超常故障串联成一个回路,当安全链动作后将引起紧急停机,执行机构失电,机组瞬间脱网,控制系统在3秒左右,将机组平稳停止,从而最大限度地保证机组的安全。发生下列故障时将触发安全链:叶轮过速、机组部件损坏、机组振动、扭缆、电源失电、紧急停机按钮动作。微机控制器抗干扰保护风电场控制系统的主要干扰源有:工业干扰:如高压交流电场、静电场、电弧、可控硅等,自然界干扰:雷电冲击、各种静电放电、磁爆等;高频干扰:微波通讯。无线电信号、雷达等。这些干扰通过直接辐射或由某些电气回路传导进入的方式进入到控制系统,干扰控制系统工作的稳定性。从干扰的种类来看,可分为交变脉冲干扰和单脉冲干扰两种,它们均以电或磁的形式干扰控制系统。参考国家(国际)关于电磁兼容(EMC)的有关标准,风电场控制设备也应满足相关要求。如:GB/T13926.1(IEC8011)工业过程测量和控制装置的电磁兼容性总论GB/T13926.2(IEC8011)工业过程测量和控制装置的电磁兼容性静电放电要求GB/T13926.3(IEC8011)工业过程测量和控制装置的电磁兼容性辐射电磁场要求GB/T13926.4(IEC8011)工业过程测量和控制装置的电磁兼容性电快速瞬变脉冲群要求。并应通过相关行业根根标准GB/T17626(IEC61000)进行的检测。以保证设备的可靠性。接地保护接地保护是非常重要的环节。良好的接地将确保控制系统免受不必要的损害。在整个控制系统中通常采用以下几种接地方式,来达到安全保护的目的。工作接地、保护接地、防雷接地、防静电接地、屏蔽接地。接地的主要作用一方面是为保证电器设备安全运行,另一方面是防止设备绝缘被破坏时可能带电,以致危及人身安全。同时能使保护装置迅速切断故障回路,防止故障扩大。要使风电机组可靠运行,需要在风电机组控制系统的保护功能设计上加以重视。在设计控制系统的时候,往往更注重系统的最优化设计和提高可利用率,然而进行这些设计的前提条件却是风电机组控制系统的安全保护,只有在确保机组安全运行的前提下,我们才可以讨论机组的最优化设计、提高可利用率等。因此,控制系统具备完善的保护功能,是风电机组安全运行的首要保证。风电场的计算机监控系统风电场计算机监控系统分中央监控系统和远程监控系统,系统主要由监控计算机、数据传输介质、信号转换模块、监控软件等组成。中央监控系统的功能是:对风力发电机进行实时监测、远程控制、故障报警、数据记录、数据报表、曲线生成等。风机控制器目前风电场所采用的风电机组都是以大型并网型机组为主,各机组有自己的控制系统,用来采集机组数据及状态,通过计算、分析、判断而控制机组的启动、停机、调向、刹车和开启油泵等一系列控制和保护动作,能使单台风力发电机组实现全部自动控制,无需人为干预。目前国内监控系统的下位机是指风电机组的控制器。对于每台风力发电机组来说,即使没有上位机的参与,也能安全正确地工作。所以相对于整个监控系统来说,下位机控制系统是一个子系统,具有在各种异常工况下单独处理风电机组故障,保证风电机组安全稳定运行的能力。从整个风电场的运行管理来说,每台风电机组的下位控制器都应具有与上位机进行数据交换的功能,使上位机能随时了解下位机的运行状态并对其进行常规的管理性控制,为风电场的管理提供方便。因此,下位机控制器必须使各自的风力发电机组可靠地工作,同时具有与上位机通讯联系的专用通讯接口。国外进口的风机控制器主机一般采用专门设计的工业计算机或单板机。也有采用可编程控制器(PLC)。国内生产的一般较多采用可编程控制器(如西门子S7-300),这样硬件的可靠性和稳定性好,尤其是对于海上风电维护不便,更需要高可靠的控制器。PLC模块化的结构方便组成各种所需单元。控制器之间的联接也很方便,易于构成主从式分散控制系统。计算机监控系统计算机监控系统负责管理各风电机组的运行数据、状态、保护装置动作情况、故障类型等。为了实现上述功能,下位机(风机控制器)控制系统应能将机组的数据、状态和故障情况等通过专用的通讯装置和接口电路与中央控制器的上位计算机通讯,同时上位机应能向下位机传达控制指令,由下位机的控制系统执行相应的动作,从而实现远程监控功能。中央监控系统一般运行在位于中央控制室的一台通用PC机或工控机上,通过与分散在风电场上的每台风力机就地控制系统进行通信,实现对全场风力机的集群监控。风电场中央监控机与风力机就地控制系统之间的通信属于较远距离的一对多通信。国内现有的风电场中央监控系统一般采用RS485串行通信方式和4〜20mA电流环通信方式。比较先进的通讯方式还有PROFIBUS通信方式、工业以太网通信方式等。上述各种通讯方式能够完成风电场中央监控系统中的通信问题,但具有各自的特点,主要通信方式简要对比如下:监控系统软件目前,我国各大风电场在引进国外风力发电机组的同时,一般也都配有相应的监控系统,但各有自己的设计思路和通讯规约,致使风电场监控技术互不兼容。同时,控制界面全部是英文的也不利于运行人员操作。如果一个风电场中有多个厂家的多种机型的风电机组的话,就会给风电场的运行管理造成一定困难。如内蒙辉腾锡勒风电厂就有约5种的监控软件。因此,国家在科技攻关计划中除了对大型风电机组进行攻关外,也把风电场的监控系统列入攻关计划,以期开发出适合我国风电场运行管理的监控系统。目前也有一些国产监控系统开发成功并投入运行。如:新疆风能有限责任公司的“通用风电场中央及远程监控系统”。风电场的监控软件应具有如下功能:①友好的控制界面。在编制监控软件时,应充分考虑到风电场运行管理的要求,应当使用中文莱单,使操作简单,尽可能为风电场的管理提供方便。②能够显示各台机组的运行数据,比如每台机组的瞬时发电功率、累计发电量、发电小时数、风轮及电机的转速和风速、风向等,将下位机的这些数据调入到上位机,在显示器上显示出来,必要时还应当用曲线或图表的形式直观地显示出来。③显示各风电机组的运行状态。如开机、停车、调向、手/自动控制以及发电机工作情况。通过各风电机组的状态了解整个风电场的运行情况,这对整个风电场的管理是十分重要的。④能够及时显示各机组运行过程中发生的故障。在显示故障时,应能显示出故障的类型及发生时间,以便运行人员及时处理和消除故障,保证风电机组的安全和持续运行。⑤能够对风电机组实现集中控制。值班员在集中控制室内,就能对下位机进行状态设置和控制,如开机、停机、左右调向等。但这类操作必须有一定的权限,以保证整个风电场的运行安全。⑥历史记录。监控软件应当具有运行数据的定时打印和人工即时打印以及故障自动记录的功能,以便随时查看风电场运行状况的历史记录情况。监控软件的开发应尽可能在现有工业控制软件的基础上进行二次开发,这样一方面可以缩短开发周期,另一方面现有的工业控制软件技术成熟、应用广泛,因此稳定性好。随着软件的升级而方便地升级。而直接从底层开发的监控软件如果没有强大的软件队伍,和经验丰富的软件人员很难与之相比。远程监控系统功能:实时查看就地风机运行情况、数据记录。实际上只要通讯网连通,理论上远程监控系统能够实现的功能和中央监控系统一样。但是为了安全起见目前国内远程监控系统只完成监视功能,随着技术的发展,无人值班风电场的推出,远程监控系统将发挥更大作用。远程监控系统的实现通讯网络又是关键环节,根据国家经贸委关于“电网和电厂计算机监控系统及调度数据网络安全防护规定”,电力监控系统和电力调度数据网络均不得和互联网相连。因此远程监控系统通常只能使用专线或电力调度数据网络。考虑到实际情况和需要,现在实现的风电场远程监控系统一般采用电话线进行通讯。风力发电和电网的联接近年来大规模风力发电场的数量大幅度增加。由于风场大都位于海面上,或遥远的乡村、山区,如何将风场连接至电网是投资风力发电时一个重要的考虑因素。如果是海上风场,这个因素更为重要。除了建设需要考虑的问题外,对电力系统稳定的影响也是需要考虑的重要因素。随着风电场的容量越来越大,对电力系统的影响也越来越明显,研究风电并网后对系统的影响己成为重要课题。风电的随机性使风电厂输入系统的有功功率处于不易控制的变化之中,相应地风电场吸收的无功功率也处于变化之中。在系统重负荷或者临近功率极限运行时,风速的突然变化将成为系统电压失稳的扰动。风电场所在地区往往远离负荷中心,处于供电网络的末端,而且需要消耗感性无功,系统的电压稳定问题更加突出。在风电场规划设计时,通常根据电力系统确定一个风电场的最大容量,但是不同厂家、型号的风力发电机组的功率曲线不同,无功电压特性也不同。目前国内采用的双馈机组可以根据需要调节无功,对系统来说起到了一定的稳压作用。风电也给发电和运行计划的制定带来很多困难,需要重新评估系统的发电可靠性,分析风电的容量可信度,研究新的无功调度及电压控制策略以保证风电场和整个系统的电压水平及无功平衡,以及对孤立系统的稳定性影响等。风力发电机的并网风力发电领域要解决的一个很重要的问题是风力发电机组的并网问题。目前在国内和国外大量采用的是交流异步发电机,其并网方法也根据电机的容量不同和控制方式不同而变化。异步发电机并入网运行时,是靠滑差率来调整负荷的,其输出的功率与转速近乎成线性关系,因此对机组的调速要求不像同步发电机那么严格和精确,只要检测到转速接近同步转速时就可并网,但异步发电机在并网瞬间会出现较大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。随着风力发电机组单机容量的不断增大,这种冲击电流对发电机自身部件的安全及对电网的影响也愈加严重。过大的冲击电流,有可能使发电机与电网连接的主回路中的自动开关断开;而电网电压的较大幅度下降,则可能会使电压保护回路动作,从而导致异步发电机根本不能并网。当前在风力发电系统中采用的异步发电机并网方法有以下几种。1.直接并网这种并网方法要求在并网时发电机的相序与电网的相序相同,当风力驱动的异步发电机转速接近同步转速(达到99%〜100%同步转速)时即可并入电网;自动并网的信号由测速装置给出,而后者通过自动空气开关合闸完成并网过程。这种并网方式比同步发电机的准同步并网简单,并网容易。但直接并网时会出现较大的冲击电流4〜5倍发电机额定电流),电网电压瞬时严重下降,因此这种并网方法只适用于异步发电机容量在百千瓦级以下或电网容量较大的情况下。中国最早引进的55KW风力发电机组及自行研制的50KW风力发电机组都是采用这种方法并网的。准同期并网与同步发电机准同步并网方式相同,在转速接近同步转速时,先用电容励磁,建立额定电压,然后对已励磁建立的发电机电压和频率进行调节和校正,使其与系统同步。当发电机的电压、频率、相位与系统一致时,将发电机投入电网运行。采用这种方式,若按传统的步骤经整步到同步并网,则仍须要高精度的调速器和整步、同期设备,不仅要增加机组的造价,而且从整步达到准同步并网所花费的时间很长,这是我们所不希望的。该并网方式合闸瞬间尽管冲击电流很小,但必须控制在最大允许的转矩范围内运行,以免造成网上飞车。由于它对系统电压影响极小,所以适合于电网容量比风力发电机组大不了几倍的地方使用。降压并网这种并网方法是在异步电机与电网之间串接电阻或电抗器,或者接入自耦变压器,以达到降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。因为电阻、电抗器等元件要消耗功率,在发电机并入电网以后,进入稳定运行状态时,必须将其迅速切除,这种并网方法适用于百千瓦级以上,容量较大的机组,显见这种并网方法的经济性较差,中国引进的200KW异步风力发电机组,就是采用这种并网方式,并网时发电机每相绕组与电网之间皆串接有大功率电阻。软并网这种并网方法是在异步发电机定子与电网之间通过每相串入一只双向晶闸管连接起来,三相均有晶闸管控制。接入双向晶闸管的目的是将发电机并网瞬间的冲击电流控制在允许的限度内。其并网过程:当风力发电机组接收到由控制系统内微处理机发出的启动命令后,先检查发电机的相序与电网的相序是否一致,若相序正确,则发出风力发电机组开始启动的命令。当发电机转速接近同步转速时(约为99%~100%同步转速),双向晶闸管的控制角同时逐步打开,异步发电机即通过晶闸管平稳地并入电网;随着发电机转速继续升高,电机的滑差率逐渐趋于零,当滑差率为零时,并网自动开关动作,双向晶闸管被短接,异步发电机的输出电流将不再经双向晶闸管,而是通过已闭合的自动开关直接流入电网。在发电机并网后,应立即在发电机端并入补偿电容,将发电机的功率因数(COS®)提高到0.95以上。这种软并网方法的特点是通过控制晶闸管的导通角,将发电机并网瞬间的冲击电流值限制在规定的范围内(一般为1.5倍额定电流以下,从而得到一个平滑的并网暂态过程。通过晶闸管软并网方法将风力驱动的异步发电机并入电网是目前国内外中型及大型风力发电机组中普遍采用的,中国引进和自行开发研制生产的250KW、300KW、600KW的并网型异步风力发电机组,都是采用这种并网技术。并网后需要关注的主要问题电能质量根据国家标准,对电能质量的要求有五个方面:电网高次谐波、电压闪变与电压波动、三相电压及电流不平衡、电压偏差、频率偏差。风电机组对电网产生影响的主要有高次谐波和电压闪变与电压波动。电压闪变风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。容易造成电压闪变与电压波动。谐波污染风电给系统带来谐波的途径主要有两种。一种是风机本身配备的电力电子装置可能带来谐波问题。对于直接和电网相连的恒速风机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过过程很短。对于变速风机是通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这个问题也在逐步得到解决。另一种是风机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。当然与闪变问题相比,风电并网带来的谐波问题不是很严重。电网稳定性在风电的领域,经常遇到的一个的难题是:薄弱的电网短路容量、电网电压的波动和风力发电机的频繁掉线。尤其是越来越多的大型风电机组并网后,对电网的影响更大。在过去的20年间,风电场的主要特点是采用感应发电机,装机规模较小,与配电网直接相连,对系统的影响主要表现为电能质量。随着电力电子技术的发展,大量新型大容量风力发电机组开始投入运行,风电场装机达到可以和常规机组相比的规模,直接接入输电网,与风电场并网有关的电压、无功控制、有功调度、静态稳定和动态稳定等问题越来越突出。这需要对电力系统的稳定性进行计算、评估。要根据电网结构,负荷情况,决定最大的发电量和系统在发生故障时的稳定性。国内外对电网稳定性都非常重视,开展了不少关于风电并网运行与控制技术方面的研究。风电场大多采用感应发电机,需要系统提供无功支持,否则有可能导致小型电网的电压失稳。采用异步发电机,除非采取必要的预防措施,如动态无功补偿、否则会造成线损增加,送电距离远的末端用户电压降低。电网稳定性降低,在发生三相接地故障,都将导致全网的电压崩溃。由于大型电网具有足够的备用容量和调节能力,一般不必考虑风电进入引起频率稳定性问题。但是对于孤立运行的小型电网,风电带来的频率偏移和稳定性问题是不容忽视的。由于变频技术的发展,我们可以利用交直-交的变频调节装置的控制功能很容易地根据电网采集到的线路电压波动的情况、功率因数的状况等、和电网的要求,来调节和控制变频装置的频率、相位角和幅值使之达到调节电网的功率因数,为弱电网提供无功能量的要求。发电计划与调度传统的发电计划基于电源的可靠性以及负荷的可预测性,以这两点为基础,发电计划的制定和实施有了可靠的保证。但是,如果系统内含有风电场,因为风电场出力的预测水平还达不到工程实用的程度,发电计划的制定变得困难起来。如果把风电场看做负的负荷,不具有可预测性;如果把它看做电源,可靠性没有保证。正因为如此,有必要对含风电场电力系统的运行计划进行研究。风力发电并网以后,如果电力系统的运行方式不相应地做出调整和优化,系统的动态响应能力将不足以跟踪风电功率的大幅度、咼频率的波动,系统的电能质量和动态稳定性将受到显著影响,这些因素反过来会限制系统准入的风电功率水平,因此有必要对电力系统传统的运行方式和控制手段做出适当的改进和调整,研究随机的发电计划算法,以便正确考虑风电的随机性和间歇性特性。风电控制发展动态尽管目前风电场大多还在使用恒速风机,不少风机厂商也在制造兆瓦级以上恒速风机。但是有趋势表明:未来几年变浆距功率调节方式将取代定浆距功率调节方式;变速恒频方式将取代恒速恒频方式,以达到最大限度地提高风能的利用效率。吏用变速风机有多种方案可供选择:采用通过电力电子装置与电网相连的同步多极电机,取消风机上常用的变速齿轮箱,减少风机的故障率;或者采用双馈感应电机,实现风机以最佳叶尖比运行。由于电力电子元件的性能不断提高,价格不断下降,以IGBT为代表的新型电力电子器件的最大功率已经达到MVA级,升关频率达到10kHZ,脉定调制技术(PWM)的采用有效地抑制了电力电子器件容易带来的谐波。如果把这些技术用于控制系统,可以屏蔽掉风机固有的随机特性对电网的
影响,提高捕获风能的效率,较少对桨叶和驱动轴的应力损伤,降低空气动力噪声水平,改进风机运行的灵活性。同样,电力电子器件性能价格比的不断提高为新型风电机的应用和新型控制系统的应用提供了可能。比如:双馈电机实现了对风机速度和功率因数的控制。在风速变化及风机端电压变化的情况下,保证风机的稳定高效运行。还可以承担有功及无功电压调节的任务,在系统中起到常规发电机组的作用,这也是风电发展到一定规模以后的必然要求。需要重点研究的内容风电机最优控制方案、风电机控制器可靠性研究、人性化中文界面监控系统、风机并网静态稳定和动态稳定的研究和仿真计算、大功率IGBT逆变器、风电设备防雷保护系统。风力发电机组的噪声控制摘要:简要分析了风力发电机组的噪声源,重点介绍了阻尼减振降噪控制和噪声传播降噪控制的原理和方法,提出风力发电机组的噪声控制措施和方法。关键词:风力发电机阻尼减振噪声控制0引言能源是现代社会和经济发展的基础。在常规能源告急和全球生态环境恶化的双重压力下,风能作为最有开发利用前景和技术最成熟的一种新能源和可再生能源之一,已成了全球能源工业关注的热点。自二十世纪七十年代以来,风能开发和利用在欧美发达国家发展非常迅速,风力发电的技术也日趋成熟。中国国家计委于1996年3月制定了“乘风计划”,以风力发电机的国产化来带动风电场建设的产业化。该计划旨在采取技贸结合的形式,引进国外先进技术,通过消化吸收,达到自主开发,自行设计和制造大型风力发电机的能力【1】。风能开发能减轻空气污染和水污染,但如果处理不当,则会增加噪声污染。近几年,随着风力发电机国产化程度的不断扩大,而我国制造业与欧美发达国家还有一定的差距,因此国产化风力发电机振动噪声问题逐渐显现出来。风力发电场附近居民对风力发电机组产生大噪声烦扰的投诉、申告也越来越多,甚至威胁到风力发电机的正常国产产业化,因此,风力发电机的减振降噪控制是非常重要和必要的。本文将重点讨论阻尼减振降噪技术和噪声传播降噪技术在风力发电机组噪声控制中的应用。1噪声源分析风力发电机组工作过程中在风及运动部件的激励下,叶片及机组部件产生了较大的噪声,其噪声源主要有:机械噪声及结构噪声齿轮噪声。啮合的齿轮对或齿轮组,由于互撞和摩擦激起齿轮体的振动,而通过固体结构辐射齿轮噪声。轴承噪声。由轴承内相对运动元件之间的摩擦和振动及转动部件的不平衡或相对运动元件之间的撞击引起振动辐射产生噪声。周期作用力激发的噪声。由转动轴等旋转机械部件产生周期作用力激发的噪声。电机噪声。不平衡的电磁力使电机产生电磁振动,并通过固体结构辐射电磁噪声。
机械噪声和结构噪声是风力发电机组的主要噪声源,而且对人的烦扰度最大。这部分噪声是能够控制的,其主要途径是避免或减少撞击力、周期力和摩擦力,如提高加工工艺和安装精度,使齿轮和轴承保持良好的润滑条件等。为减小机械部件的振动,可在接近力源的地方切断振动传递的途径,如以弹性连接代替刚性连接;或采取高阻尼材料吸收机械部件的振动能,以降低振动噪声。空气动力噪声空气动力噪声由叶片与空气之间作用产生,它的大小与风速有关,随风速增大而增强。处理空气动力噪声的困难在于其声源处在传播媒质中,因而不容易分离出声源区。通风设备噪声散热器、通风机等辅助设备产生的噪声。2噪声控制噪声控制可以从噪声源、噪声传播途径和噪声接受者三方面入手【2】。噪声控制技术主要以噪声的声学控制方法为主,具体的技术途径一般包括隔声处理、吸声处理、振动的隔离、阻尼减振等。隔声处理和吸声处理属于噪声传播降噪控制;振动的隔离和阻尼减振属于阻尼减振降噪控制。这些噪声控制方法的机理在于,通过噪声声波与声学材料或声学结构、振动波与阻尼材料或阻尼结构的相互作用消耗能量,从而达到降低噪声的目的。2.1阻尼减振降噪控制阻尼减振降噪技术是利用阻尼材料的特性以及阻尼结构的合理设计,耗散结构件的振动能量,来达到减振降噪的目的。阻尼减振技术近年来得到了迅速的发展,尤其在航空航天、汽车工业、仪器仪表、兵器、建筑业及家电行业等领域有着广泛的应用。无论是在基础理论方面,还是在新材料的研制以及应用技术方面都已成长为一个独立的科学分支。2.1.1阻尼材料及其特性材料阻尼是指材料内部在经受振动变形过程中损耗振动能量的能力【3】。阻尼材料也称粘弹阻尼材料,或粘弹性高阻尼材料。它是一种兼有某些粘性液体和弹性固体特性的材料。粘性液体有耗散能量的能力,而不能储存能量;相反,弹性材料有储存能量的能力,而不能耗散能量。粘弹性材料介于两者之间,当它产生动态应力和应变时,有一部分能量被转化为热能而耗散掉,而另一部分能量以位能的形式储存起来。能量被转化和耗散的现象表现为阻尼特性。利用它可抑制共振频率下的振动峰值,减少振动沿结构的传递,降低结构噪声。各种阻尼材料都受环境温度和工作频率的影响,温度不同,工作频率不同,阻尼特性也不同。作为良好的阻尼材料,应在较宽温度范围和较宽频率范围具有较高的损耗因子,如图1所示。33402020406080001—20402020406080001—20温度(9)图1阻尼材料特性曲线2.1.2表面阻尼处理表面阻尼处理主要应用于受弯曲振动为主的厚度不大的构件或薄板零件。风力发电机舱以及隔板等均为薄板振动件,因此表面阻尼处理在风力发电机上能得以应用。表面阻尼处理通常分为自由阻尼处理和约束阻尼处理两大类。(1)自由阻尼处理将一层一定厚度的粘弹阻尼材料粘贴于基板表面上,当基板产生弯曲振动时,阻尼层随基本层一起振动,在阻尼层内部产生拉-压变形。根据阻尼材料的耗能机理,当阻尼材料内部产生交变应力时,阻尼材料就会将有序的机械能转化为无序的热能,从而起到耗能的作用。自由阻尼结构如图2所示,阻尼层越厚,阻尼损耗因子越大,制振效能就越好。a)自由状态b)振幼拉■压变形状态1—基本层2一阻尼层图2自崔盟尼处理结构a)自由状态b)振动拉-压变形状态1一基本层2—阻尼层图2自由阻尼处理结构(2)约束阻尼处理在自由阻尼处理的阻尼层外侧表面再粘贴一弹性层,这一弹性层应具有远大于阻尼层的弹性摸量。当阻尼层随基本结构层一起产生弯曲振动而使阻尼层产生拉-压变形时,由于粘贴在外侧弹性层的弹性摸量远大于阻尼层的弹性摸量,因此这一弹性层将起到约束阻尼层的拉-压变形的作用,所以这一弹性层被称为约束层,而受弹性层约束的阻尼层被称为约束阻尼层。由于阻尼层与基本层接触的表面所产生的拉-压变形不同于与约束层接触的表面所产生的拉-压变形,从而在阻尼材料内部产生剪切变形。因此约束阻尼处理结构中,阻尼层不仅承受拉-压变形,还同时承受剪切变形,它们都能起到耗能作用,如图3所示。约束阻尼结构比自由阻尼结构耗散更多的能量,因此具有更好的减振降噪效果。igkonci.coia)自由状态b)振动拉-压及剪切变形状态1一基本层2—阻尼层3—约束层图3约束阻尼处理结构实际应用中往往将基本层与约束层采用同一种材料,且厚度相同,称为对称型复合阻尼材料结构。2.1.3阻尼材料种类及其应用阻尼材料分为阻尼板材和阻尼涂料两大类,阻尼板材根据基体成分又分为沥青阻尼板材和橡胶阻尼板材,阻尼板材具有良好的减振隔声性能,性能稳定,但对结构表面形状和安装工艺性要求较高。阻尼板材可用于振动源附件的结构部件表面,也可贴附于薄壳结构表面做自由阻尼处理结构。阻尼涂料是一种特殊的涂料,可以将其涂覆于各种材料、各种复杂形状的结构表面上,它具有减振、降噪、隔振和密封的作用。阻尼涂料可以喷涂或刮涂于薄壳结构表面,做成自由阻尼处理结构。阻尼涂料施工简便,特别适合于形状复杂的壳体涂覆,可以做到整体美观。由于风力发电机的主要机组部件安装于机舱内部,这些部件产生的振动直接传递给机舱,引起机舱振动并辐射产生噪声。因此可以在机舱内表面贴附阻尼材料对机舱进行表面自由阻尼处理,衰减振动,降低结构辐射噪声,同时隔离机舱内部的噪声向外传播。2.2噪声传播降噪控制噪声传播控制,又称无源噪声控制,它是在噪声传播途径中使用声学材料或声学结构来隔离或吸收一部分声能,使声波在通过声学材料或声学结构时得到衰减而达到降噪控制的目
的。噪声传播降噪控制与阻尼减振降噪控制是相辅相成、密不可分的,阻尼对提高材料的隔声性能有明显的作用。对风力发电机机舱内表面贴覆阻尼隔声材料做阻尼、隔声处理,当机舱内齿轮箱、电机等部件产生的噪声入射到机舱壳体表面时被转化成以下主要部分:1)一部分被反射回机舱内部;2)—部分在经过机舱表面时被转化成其它形式的能量或波形而被吸收。如:其中一部分被贴附于机舱壳体上的高阻尼材料转化成热能而被损耗了,另一部分转换为结构辐射噪声或其它形式的波形;3)最后剩下的一部分透过机舱传入外部环境。噪声传播过程中的能量分配见图4。定戳设入射声能为E_v反肘声能为E軒損耗事能为E屮艘形转比堆址为E透迪由粽皆E屮刑衬;E\=Ey+Ek+E*+E寸曙声性能豹瓏声性能是材料主要的声学性能参数.隔声性能卽陽声■来表示,赫料亠嵋的入射声能E扎与另一侧的趟过事能E划相差的分贝狡就是该材料的陽世;:.通常以符月RrdBf技示「R=10lgE.-WigEfl=lQlg_-(1}F%式申】R一隔冏髭Ek——入射声能Efl——过嗣綾<1>式表明,透过声能与入射声能之比越小,材料的隔声性能越好*材純的嗫向丼能以:吸⑺系数来晏示'吸涎系数是嵌示入弊序陀被材料吸妆部分斯酥入射声儘的比率,用口农示*忒屮:*一一服対系数Ea——人射卅養E一反射声能(2)式表明,反射声能越小,则材料的吸声系数就越大,其吸声性能越好。材料的隔声性能与吸声性能往往成反比例关系,隔声性能越好,则其吸声性能就越差。风力发电机的噪声控制主要目的是降低周围环境噪声,也就是控制发电机机舱内部的噪声传播出来干扰周围居民的生活,因此应主要考虑选用阻尼隔声材料,如阻尼涂料、沥青阻尼板或橡胶阻尼板等,对风电机的机舱采用阻尼隔声处理,达到降低风电机周围环境噪声的目的。另外,在对机舱进行阻尼隔声处理时应注意密封及散热问题。3结束语阻尼减振降噪控制和噪声传播中的隔声降噪控制可作为风力发电机组噪声治理的重要
手段,它具有施工简单方便,无需维修保养,无需改造现有结构,投入相对较少的优点。它不但可以作为一个独立的手段予以采用,而且可以和其它降噪措施相辅相成,增加降噪效果。株洲时代新材料科技股份有限公司正致力于这方面的研究工作,针对大功率风力发电机研究开发的的高性能阻尼涂料和阻尼板材对风电机舱进行阻尼隔声处理,经过实验证明其对降低风电机的噪声具有较好的效果。走自主创新之路我国第一片兆瓦级风电叶片一一1.5兆瓦级38米风电叶片,近日在甘肃白银市顺利下线。专家表示,这标志着中国风电设备制造迈向自主创新之路。这片叶片是由华翼风电叶片研究开发有限公司自主研制的。据了解,这家公司是中国科学院工程热物理研究所、保定国家新能源设备产业基地、中国风能协会等共同发起成立的风电叶片专业化研发机构。出席下线仪式的中国风能协会秘书长秦海岩说,中国风电技术基础还很薄弱,还没有完全掌握相关核心技术。更多的风电设备制造企业只会组装风机,还不能自主设计,许多引进的设备还不能完全消化吸收。据秦海岩介绍,中国已有近70家企业涉足风电整机制造,17至18家企业完成了样机的制造,并网发电。大部分零部件均已实现国产化,产业链初步形成。但轴承、电流器、控制系统等风机的核心部件相关技术,目前国内企业并不完全掌握。近年来,我国风电产业呈现爆发性增长态势,风电设备制造业有了很大发展。2005年11月,华翼风电设备研发中心(以下简称华翼)在河北保定成立。两年多来,华翼致力于建立具有自主知识产权的叶片研发体系,成为国内首个风电叶片自主研发机构,填补了我国风电行业没有叶片自主研发机构的空白。华翼汇聚了包括中科院15名院士在内的国内风电领域最具代表性的高端专家学者,员工140余人,重点研发850千瓦至2.5兆瓦多个系列叶片产品。华翼致力于掌控风电叶片的设计研发技术,突破风电叶片核心技术壁垒,打造中国风电行业的公共技术平台和技术研发中心,促进中国风电技术的自主化发展。由华翼设计的叶片此次在甘肃白银实现了产业化,说明产业目标正在逐步成为现实。产业有望长足发展叶片是风力发电机的核心部件,造价约占整个设备的1/4到1/3。国际市场存在较大的需求。例如美国计划未来两年内装机500万千瓦,日本和澳大利亚也有与中国规模相当的市场规划。华翼风电设备研发公司董事长、中科院院士徐建中说,中国风度较低、北方沙尘天气较多等特点都要求风电设备自主创新。从引进装机,到联合设计,再到消化吸收、自主设计,这标志着中国风电设备产业化的新进程。
我国去年开始掀起的节能减排风暴将令风电这一新兴绿色能源获得长足发展。目前,我国风电产业的龙头企业中航惠腾公司的产品已经成功服务于全国30多家大型风电场,2007年其产量占国产叶片的90%;惠德风电已批量投产并向美洲出口;国电联合动力兆瓦级风电机组成功下线,预计投产后年可实现产值80亿元。总投资11亿元的中国电谷风电设备产业园已开工建设,投产后预计可实现产值100亿元。此外,中国电谷3兆瓦海上风机项目被科技部列为国家科技支撑计划项目。风电受益政策扶持在扩大内需、促进经济增长的10项措施中,加快重大基础设施建设、加快城市电网改造,支持重点节能减排工程建设等赫然置于十大措施的前列,而这些方向的重点加强都将促进风电行业的加速发展。其实早在今年8月财政部就发布了关于《风力发电设备产业化专项资金管理暂行办法》,明确了中央财政安排风电设备产业化专项资金的补助标准和资金使用范围,并将对风力发电设备制造商给予直接的现金补贴。这一切都说明风电行业已引起国家相关部委的足够重视,有望开启中国风电发展的崭新时代。另外,近期全球金融危机的影响正逐步扩大,但风电行业却属于朝阳产业。从近期刚刚闭幕的风能大会上看,虽然受到金融风暴的影响,但我国风能企业发展依然健康发展,很多国内风电企业未来几年的订单饱满。全球金融危机使很多行业投资收缩,但中国风电产业似乎没有受到冲击,反而出现了新的机遇。世界自然基金会和中国资源综合利用协会可再生资源专业委员会10月29日发布的一份最新报告显示,2007年,全球风电投资中,15%的资金投向了中国,中国已成为全球最大的风电市场。由于我国的风电开发技术是目前新能源中技术比较成熟、已经具备规模开发和商业化发展前景的发电方式之一,行业发展正进入上升周期。风电机最优控制方案、风电机控制器可靠性研究、人性化中文界面监控系统、风机并网静态稳定和动态稳定的研究和仿真计算、
大功率IGBT逆变器、风电设备防雷保护系统。"风电前景广阔、政府大力扶持,但分食这块蛋糕的国内风电设备厂商却缺少核心技术。”田德告诉《科学时报》记者。据田德透露,目前他们正在研发1.5MW的低风速风能机,一年左右就能拿出样机。“这可是国外也没有的技术。咱们和国外都是在同步进行,谁能早日成功,谁就会抢占先机。”田德说。田德表示,除了他的项目组,国内很多项目组都在上马相关项目。大家都看到这是一个新的机会点,希望自己能成为风能这个光环上第一颗璀璨的明星。北京约克机电设备有限公司是一家从事进口润滑油贸易的民营企业,看准新能源市场的未来前景,目前正在开发核电阀门、风机叶片等相关零部件。该公司副总经理在接受《科学时报》记者采访时表示,目前风电企业更多关注的是风机什么时候下线,这样好多签订单,而对于技术的持续开发重视程度不够;同时,由于市场需求旺盛,国内兆瓦级风机的零部件厂商也不甚重视技术研发,而是更多依赖进口,连带提高了整个风电的生产成本。“风能产业是一条产业链,对国家工业化的水平要求很高。虽然现在其造价要远远高于火电和水电,但我们看好的是良好的产业前景,随着风机国产化率的提高,造价应该会下来。”该副总经理看好未来的市场。企业的利好判断显然带有普遍性,但田德表示,由于很多项目冲动上马,盈利的企业屈指可数。他提醒,大家都来做、都来关注是很好,但还是要量力而行,做之前先做好可行性论证。不过,“大家都来做才能优胜劣汰。现在,风电公司其实就是春秋争霸,做得好的、有能力的留下,没能力的出局,这很正常”。在田德看来,正是因为这样的竞争,我国的风电技术才可能大步向前迈进。“只有市场才是最好的法官。”他说。竞争必须以自主创新为主线一个尽人皆知的事实是,目前我国风电产业对国外技术依赖严重,尤其是一些核心设备只能靠进口,实现风电设备的国产化已成当务之急。而新的趋势是,伴随对未来风电市场的利好判断,近期越来越多的上市公司风电业务获得大量兆瓦级订单。兆瓦级装机容量已然成为市场主流。但据了解,目前国内小于2MW的兆瓦级风机真实的国产化率不足50%,2MW及以上兆瓦级风机国产化率不足20%。“目前,国内企业必须把握世界风电设备发展趋势,与国际接轨。”田德表示。据田德介绍,我国从20世纪70年代开始研制大型风电机组,到1997年才在国家乘风计划的支持下从科研走向市场。但由于缺乏基础研究积累和人才等原因,我国风电自主研发能力严重不足,总体上还处于跟踪和引进国外先进技术阶段。他认为,只有产学研结合,走技术第一的道路,以自主创新为竞争主线,我国才能在风能技术上有较大的飞跃。田德向记者透露,华北电力大学已与相关企业达成协议,尝试“华电负责技术,企业负责制造”的新模式。据了解,针对财政部颁发的对于进口部件产品不但退还关税,连“进口环节增值税”也给予退税处理的有关“先征后补”政策,合肥阳光电源有限公司总经理、中国可再生能源学会理事曹仁贤等业内人士已经表达过不满,认为该政策“表面上是支持风电产业降低成本,实质上却演变为支持进口产品”。中国农机协会风力机械分会秘书长祁和生更认为该政策有可能间接补贴了外国品牌。对此,田德的评价是“初衷是好的,但具体操作上还有待完善'。他认为国家应该把政策激励的目标放在产学研结合上,因为单凭企业的力量完全不现实,即使不断引进,技术跟不上也是无法很好吸收的。“一般而言,国外只有二流公司会出售技术,一流的公司,比如丹麦的VESTAS等,你想买,人家也不会卖给你。”田德说。技术独立,就可以独占市场在接受记者的采访过程中,田德接到了合作方打来的电话。电话中,田德对风机技术自主化信心满满。据田德介绍,目前国内风能投资公司有50多家。它们都通过银行贷款以及融资手段筹集资金,而针对风能的评估一般都是自己进行的。尽管目前盈利的项目不多,但受长远利益激励,暂时的亏损仍未阻挡它们的投资热情。值得注意的是地方政府的态度。在田德看来,受节能减排政策的影响,一些地方政府对风能开发十分积极,例如,某市政府就给丹麦VESTAS公司划出500亩地用于风能开发,吸引其到当地落户。而众所周知,这样的项目究竟能在多大程度上解决类似风电设备核心技术的国产化等敏感问题,其实还是存在疑惑的。局面似乎也无须过于悲观。据田德介绍,国外技术其实也存在一定的问题,并没有我们想象得那么理想。它们的产品价格高,使用过程中的维修费用也相当高,时间长了,将是一笔高昂的支出,这是我们无法支付的。从这个角度说,技术国产化也是我们当前应该着重解决的问题。据介绍,目前国内主要本土风电机组整机制造企业有12家,所生产的风机产量已占市场总额的50%强,这是一个相当惊人的数字。但田德认为,虽然很多企业已经生产出样机,甚至有的已经能够小批量生产,但应该看到,风电机组制造有很高的进入门槛,如果没有核心技术或者不能很快消化吸收进口技术形成自主开发能力,最终也将被市场淘汰。据记者调查,近些年国内涉足风电的企业太多,而且都是靠购买外国技术生产的,很短时间就开始大规模生产,并签下巨额订单,风机质量很难保证。田德透露,现在有些国产兆瓦级风机已经出现问题,达不到标准,返修率很高,如果这些风机投入生产,将带来很大隐患;而对生产企业来说,未来的维护成本也会吃不消。同样,北京约克的副总经理也认为:“国内机械制造的水平必须提高。风机上用到的大型铸造件国内还只有很少的厂家能生产,如果原材料、毛坯都不行的话,只会导致让国内风电行业处于无'心'化的尴尬境地。”基础人才培养必须跟上记者从田德提供的一份资料中看到,华北电力大学风能专业的教学计划已经相当完整,从基础理论到技术实践,主要围绕“设计一研究一试验”进行,所有环节安排得细致紧密。据田德介绍,华北电力大学风能专业至今还没有应届毕业生,只有几个其他专业的学生是在最后一年转到风电专业的,今年刚刚毕业,都去了很好的公司,如新疆金风等。田德说,目前,人们对风电专业的认识还很浅,认识多在表面。从今年华北电力大学风能专业的招生情况看,专业的第一志愿填报率在80%左右,显然,学生和家长们都对这个专业的未来抱以希望。而据田德介绍,现在开设风能相关专业的大学越来越多;保定电力职业技术学院这样的学校加入这个队伍,将使人才培养满足不同层次的需要,呈现的是一种良性供应。不过他也提醒,在未来风能技术的国际竞争中,学子们究竟能扮演什么角色还有待关注。《科学时报》风力发电技术的发展将带动大型风电场的建设。以大型风力发电机组组成的大型风电场,可为电网提供可再生的绿色能源,也可解决边远地区的能源供应紧张形势,大型风电场的运行管理己提上议事日程。目前,我国各大风电场在引进国外风力发电机组的同时,一般也都配有相应的监控系统。但各有自己的设计思路,致使风电场监控技术互不兼容。如果一个风电场中有多种机型的风电机组的话,就会给风电场的运行管理造成很大困难。因此,国家计委在科技攻关计划中实施对大型风电机组进行攻关的同时,也把风电场的监控系统列入攻关计划,以期开发出适合我国风电场运行管理的监控系统。1通讯方式目前风电场所采用的风电机组都是以大型并网型机组为主,各机组有自己的控制系统,用来采集自然参数,机组自身数据及状态,通过计算、分析、判断而控制机组的启动、停机、调向、刹车和开启油泵等一系列控制和保护动作,能使单台风力发电机组实现全部自动控制,无需人为干预。当这些性能优良的风电机组安装在某一风电场时,集中监控管理各风电机组的运行数据、状态、保护装置动作情况、故障类型等,十分重要。为了实现上述功能,下位机(机组控制机)控制系统应能将机组的数据、状态和故障情况等通过专用的通讯装置和接口电路与中央控制室的上位计算机通讯,同时上位机应能向下位机传达控制指令,由下位机的控制系统执行相应的动作,从而实现远程监控功能。根据风电场运行的实际情况,上、下位机通讯有如下特点:一台上位机能监控多台风电机组的运行,属于一对多通讯方式;下位机应能独立运行,并能对上位机通讯;上、下位机之间的安装距离较远,超过500m;下位机之间的安装距离也较远,超过100m;上、下位机之间的通讯软件必须协调一致,并应开发出工业控制专用功能。为了适应远距离通讯的需要,目前国内风电场所引进的监控系统主要采用如下两种通讯方式:异步串行通讯,用RS-422或RS-485通讯接口。它的传输距离可达数千公里,传输速度也可达数百万位。由于所用传输线较少,所以成本较低,很适合风电场监控系统采用。同时因为此种通讯方式的通讯协议比较简单,也很常用,所以成为较远距离通讯的首选方式。调制解调器(MODEM)方式。这是将数字信号调制成一种模拟信号,通过介质传输到远方,在远方再用解调器将信号恢复,取出信息进行处理,是一种实现远距离信号传输的方式。此种传输方式的传输距离不受限制,可以将某地的信息与世界各地交换,且抗干扰能力较强,可靠性高,虽相对说来成本较高,但在风电机组通讯中也有较多的应用。2下位机通讯接口的设计监控系统的下位机是指各风电机组的中心控制器。对于每台风力发电机组来说,即使没有上位机的参与,也能安全正确地工作。所以相对于整个监控系统来说,下位机控制系统是一个子系统,具有在各种异常工况下单独处理风电机组故障,保证风电机组安全稳定运行的能力。从整个风电场的运行管理来说,每台风电机组的下位控制器都应具有与上位机进行数据交换的功能,使上位机能随时了解下位机的运行状态并对其进行常规的管理性控制,为风电场的管理提供方便。因此,下位机控制器必须使各自的风力发电机组可靠地工作,同时具有与上位机通讯联系的专用通讯接口。可编程控制器(PLC)具有功能齐全,可靠性高和编程方便的特点,在工业控制领域受到广泛的欢迎。尤其是近年来,为了适应现场控制要求及集散控制的要求,国外的PLC厂家纷纷推出与各自PLC相配套的通讯模块,这些模块提供了RS232/422适配器或RS-232接口与PC机之间实现数据通讯,并有专门的编程软件,使软件开发更加方便。因而,采用可编程控制器(PLC)作为风力发电机组的下位控制器,完全可以满足风力发电机组控制和风电场监控的要求。3风电监控界面设计监控应用软件是根据具体对象来实施工业监控而开发出的软件,用在监控系统中执行监视、控制生产过程和及时调整的应用程序。对于风电场监控系统,首先要显示风电场整体及机组安装的具体位置,而后要了解各台机组之间的连接关系及每台风电机组的运行情况。因此,风电场的监控软件应具有如下功能:友好的控制界面。在编制监控软件时,应充分考虑到风电场运行管理的要求,应当使用汉语菜单,使操作简单,尽可能为风电场的管理提供方便。能够显示各台机组的运行数据,如每台机组的瞬时发电功率、累计发电量、发电小时数、风轮及电机的转速和风速、风向等,将下位机的这些数据调入上位机,在显示器上显示出来,必要时还应当用曲线或图表的形式直观地显示出来。显示各风电机组的运行状态,如开机、停车、调向、手/自动控制以及大/小发电机工作等情况。通过各风电机组的状态了解整个风电场的运行情况,这对整个风电场的管理是十分重要的。能够及时显示各机组运行过程中发生的故障。在显示故障时,应能显示出故障的类型及
发生时间,以便运行人员及时处理及消除故障,保证风电机组的安全和持续运行。能够对风电机组实现集中控制。值班员在集中控制室内,只需对标明某种功能的相应键进行操作,就能对下位机进行改变设置、状态和对其实施控制。如开机、停机和左右调向等。但这类操作必须有一定的权限,以保证整个风电场的运行安全。系统管理。监控软件应当具有运行数据的定时打印和人工即时打印以及故障自动记录的功能,以便随时查看风电场运行状况的历史记录情况。欢迎大家发表自己的见解!摘要本文针对在特定的地点开发一个由适宜的输电线路连接而成的陆上风能源工程所必要的条件,提供了一份详细的研究报告。在开发过程中,为了使开发中的成本最小化并能得到最大的回报,许多影响因素应同时考虑。在某种程度,地点的选择能使项目取得最大的成功。在选择地点时应考虑风能资源,连接费用,土地的可用性,潜在的环境影响,位置的便利性和可建设性,购电协议、融资结构和可能的风力发电机制造商,还用当地的政治环境。只有在以上所有因素都考虑的基础上,才能决定在使用一台单独的风力发电机,一组风力发电机,还是一个大规模的风力发电场中哪个最为合适,并且决定哪种风力发电场设计最合理。最初地点的选择和风险评估,在决定一个风力发电场可能的容量及其限制因素中起着至关重要的作用。在这些调查研究中,位于首位的是提出可能的风力发电场设计方案,接着是更多的详细分析,包括:风速、发电机的位置和潜在的环境影响。另外,发电机的供应商和输电线的连接安排必须在对发电场的设计达成一致之前得到解决。在建设风力发电场过程中危险的情况往往不是由于不合理的开发计划和不切实际的地点选择所造成的。对于技术和商业上的风险,在合适的时间内,关注在开发中相关的方面是非常重要的。本文尝试性地概括了这些问题。1引言陆上电网连接的风力发电配置可以有各种规模,从一台单独的千瓦风力发电机到一个大型的风力发电场,其发电能力为100兆瓦或更多,每个发电机有130米高。这种差异导致了对开发过程要求的不同,环境影响,成本和项目开发的期限。本文讨论了如何在所有这些影响因素中找到平衡。一个乐观的风能项目可以得到最大的经济回报,最小的环境影响,并保证最好的运作,从总体上保护风能产业的长期利益。2.影响风力发电场建设的因素首先,确定何时建设一个风力发电场,这是一个非常重要的关键问题。下面是详细说明:2.1风力资源显而易见,风力系统对于一个风力发电项目来说是主要的驱动力,因此其测量的方法应使用最高的标准,这一点很关键。可靠完整的风力测量数据对于满足工程所有者与投资人的要求是必须的。从最初的财政模型直到获得风力发电场的财政许可证,估计和测量风速,风向和湍流都是必要的步骤。特定地点的风力特征可以从风向风速图中的数据总结而得,这些特征可以用于地点的选择和最后的场址的设计中。图1中显示了一张风向风速图的例图
15.0%图1风向风速图2.2输电网连接典型的风力发电场通常连接到国有电力网系统,或者一个小型的远距离分配电力网,在使用后者时需要考虑两个关键问题:技术的可行性和成本问题。输电网的选择很大程度上依赖风力发电机的规格,同时分配电网、传输电网或者变电站的连接需要由电力专家详细分析而定。输电网的连接和发电场地点选择在优化风力发电项目规模中是个重要影响因素,这会在后文中加以解释。2.3土地的可用性保障用于风力发电场的土地能安全使用20—25年,这点很重要。在大多数情况下,风力发电场建于农场中,这需要工程的所有者与土地所有人签订租约。土地所有人和他们的承租人所要求的在租约期间风力发电场与他们农场的活动应相适应的要求必须得到满足。并且他们愿意与开发人达成适当的法律
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《新浪网NBA频道篮球赛事传播发展研究》
- 合同范本搜索平台
- 郑州大学《水工建筑物课程设计》2022-2023学年第一学期期末试卷
- 工地制作合同范本
- 年产3000台套一体化智能高端鞋机装备生产线项目可行性研究报告模板-立项备案
- 黄精自动化加工生产线项目可行性研究报告模板-立项备案
- 2024年度物流仓储服务与销售合同
- 2024年度企业级人工智能技术服务合同
- 2024年度保密单位安保服务合同
- 2024年度城市轨道交通瓷砖铺装合同:地铁站台瓷砖装修
- 游戏行业风险分析与对策
- 老年期的睡眠障碍-老年期睡眠障碍的治疗
- 腰椎骨折业务学习
- 2024年喀什地区直机关事业单位综合公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 计算机专业生涯发展报告
- 如果国宝会说话中国历史文物介绍
- 打击飙车方案
- 矿山生态修复工程验收规范
- 几类特种玻璃简介课件
- 医院培训课件:《ECMO概述及其护理》
- 蜡烛香薰知识讲座
评论
0/150
提交评论