版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年浙江省绍兴市北漳镇中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将函数的图象向左平移个单位,横坐标扩大到原来的2倍,纵坐标扩大到原来的3倍,所得的函数解析式为()A. B.C. D.参考答案:C【分析】根据三角函数左右平移变换、伸缩变换的原则依次变换即可得到结果.【详解】向左平移个单位得:横坐标扩大到原来的倍得:纵坐标扩大到原来的倍得:本题正确结果:【点睛】本题考查求解三角函数图象变换后的解析式,涉及到相位变换和伸缩变换,属于常考题型.2.集合{1,2,3}的所有真子集的个数为(
)A.3
B.6
C.7
D.8参考答案:C3.直线的倾斜角是(
)
A
30°
B
120°
C
60°
D
150°参考答案:A略4.如果右边程序执行后输出的结果是,那么在程序UNTIL后面的“条件”应为(
)A.i>11
B.i>=11C.i<=11D.i<11
参考答案:D5.有下列函数:①y=x2﹣3|x|+2;②y=x2,x∈(﹣2,2];③y=x3;④y=x﹣1,其中是偶函数的有----------------()A、①
B、①③
C、①②
D、②④参考答案:A略6.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x1.99345.16.12y1.54.047.51218.01对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是(
)A.
B.
C.
D.参考答案:D将所给的数据近似看成(2,1.5)、(3,4)、(4,7.5)、(5,12)、(6,18)分别代入验证.选D.7.已知函数f(x)是定义在(﹣8,8)上的偶函数,f(x)在[0,8)上是单调函数,且f(﹣3)<f(2)则下列不等式成立的是()A.f(﹣1)<f(1)<f(3) B.f(2)<f(3)<f(﹣4) C.f(﹣2)<f(0)<f(1) D.f(5)<f(﹣3)<f(﹣1)参考答案:D【考点】奇偶性与单调性的综合.【分析】根据函数的单调性和奇偶性判断函数值的大小即可.【解答】解:∵f(x)是定义在(﹣8,8)上的偶函数,f(x)在[0,8)上是单调函数,且f(﹣3)<f(2),∴f(x)在[0,8)上是单调递减函数,∴f(5)<f(3)<f(1),∴f(5)<f(﹣3)<f(﹣1),故选:D.8.
(
)
A.4
B.3
C.2
D.1参考答案:B9.(2013·辽宁理)已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()参考答案:A10.若以连续掷两次骰子分别得到的点数、作为点的坐标,求点落在圆外部的概率是(
)A.
B.
C.
D.参考答案:C由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式得到P=,那么点P落在圆外部的概率是1-=.
二、填空题:本大题共7小题,每小题4分,共28分11.已知函数(其中)图象过点,且在区间上单调递增,则的值为_______.参考答案:【知识点】三角函数的图像与性质【试题解析】因为函数(其中)图象过点,
所以,又在区间上单调递增,,
故答案为:12.△ABC的内角A,B,C的对边分别为a,b,c,已知.则cosB=__________参考答案:【分析】先利用三角形内角和公式将转化,再利用降幂公式得出,最后根据同角三角函数关系式得出结果.【详解】解:因为,所以,所以,因为,所以,解得:或,因为所以.【点睛】本题考查了降幂公式、同角三角函数关系式等知识,将角转化为角是解题的前提,利用降幂公式等将题意转化为方程问题是解题的关键.13.若函数f(x)=ax2+2x+5在(3,+∞)单调递增,则a的取值范围
.参考答案:a≥0【考点】二次函数的性质.【专题】计算题.【分析】讨论a是否为0,然后根据二次函数的单调性得到对称轴与3的位置关系建立不等式,解之即可求出所求.【解答】解:当a=0时,f(x)=2x+5,在R上单调递增,符合题意当a≠0,函数f(x)=ax2+2x+5是二次函数,在(3,+∞)上单调递增,则a>0且﹣≤3,解得a≥﹣,∴a>0.综上所述,a≥0.故答案为:a≥0.【点评】本题考查二次函数的性质和应用,是高考的常见题型,难度不大,易错点是忽视a=0的情况.解题时要认真审题,仔细解答.14.
__参考答案:;略15.已知函数,若函数图象上的一个对称中心到对称轴的距离的最小值为,则的值为
.参考答案:2
略16.不等式的解集为____________.参考答案:17.设全集U=R,集合,,若,则实数的取值范围是________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.求下列函数的定义域和值域(1)(2).参考答案:【考点】函数的定义域及其求法;函数的值域.【专题】函数的性质及应用.【分析】(1)利用分式函数性质确定定义域和值域.(2)利用偶次根式的性质求定义域和值域.【解答】解:(1)要使函数有意义,则4﹣x≠0,即x≠4,∴函数的定义域为{x|x≠4},由=,∵x≠4,,∴≠1,即函数的值域为{y|y≠﹣1}.(2)要使函数有意义,则x+1≥0,即x≥﹣1,∴函数的定义域为{x|x≥﹣1},设t=,则t2=x+1,即x=t2﹣1,∴y=2t2﹣2+t=2(),∵t≥0,∴函数在[0,+∞)上单调递增,即y≥﹣2.∴函数的值域为{y|y≥2}.【点评】本题主要考查函数定义域和值域的求法,要求熟练掌握常见函数的定义域求法.19.(本小题8分)(1)已知0<x<,求x(4-3x)的最大值;(2)已知x,y都是正实数,且x+y-3xy+5=0,求xy的最小值。参考答案:------------------8分20.已知集合.求(CRB).参考答案:由得
即,解得:.即.由得,
解得.即
则=.则=
21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?参考答案:考点: 随机事件;列举法计算基本事件数及事件发生的概率.专题: 计算题.分析: (1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法.[来源:Z+xx+k.Com](2)先列举出所有的事件共有20种结果,摸出的3个球为2个黄球1个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率.(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果.解答: 把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123:P(E)==0.05(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)==0.45(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=(4)=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚90×1﹣10×5=40,每月可赚1200元点评: 本题是一个通过列举来解决的概率问题,是一个实际问题,这种情景生活中经常见到,同学们一定比较感兴趣,从这个题目上体会列举法的优越性和局限性.22.(12分)已知点A(﹣3,0),B(3,﹣3),C(1,3).(1)求过点C且和直线AB平行的直线l1的方程;(2)若过B的直线l2和直线BC关于直线AB对称,求l2的方程.参考答案:考点: 与直线关于点、直线对称的直线方程;直线的一般式方程与直线的平行关系.专题: 直线与圆.分析: (1)求出AB的斜率,根据直线平行的斜率关系,利用点斜式方程即可求出直线l1的方程;(2)求出C关于直线AB的对称点.利用两点是非常即可求l2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临夏现代职业学院《镀涂层质量检测技术》2023-2024学年第一学期期末试卷
- 丽江职业技术学院《合唱排练与指挥》2023-2024学年第一学期期末试卷
- 江苏财经职业技术学院《面向对象程序设计(Java)》2023-2024学年第一学期期末试卷
- 华北水利水电大学《小学教育教学叙事研究》2023-2024学年第一学期期末试卷
- 遵义师范学院《黑白木刻版画基础》2023-2024学年第一学期期末试卷
- 重庆理工职业学院《矿床学基础》2023-2024学年第一学期期末试卷
- 浙江特殊教育职业学院《光接入技术与数字通信课程实训》2023-2024学年第一学期期末试卷
- 中国政法大学《运动控制导论》2023-2024学年第一学期期末试卷
- 郑州信息工程职业学院《城市规划原理实验》2023-2024学年第一学期期末试卷
- 长沙电力职业技术学院《跨文化传播》2023-2024学年第一学期期末试卷
- 【传媒大学】2024年新营销
- 2025届广东省佛山市高三上学期普通高中教学质量检测(一模)英语试卷(无答案)
- 自身免疫性脑炎课件
- 人力资源管理各岗位工作职责
- 公路工程标准施工招标文件(2018年版)
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 聚合物的流变性详解演示文稿
- 电气设备预防性试验安全技术措施
- 医院出入口安检工作记录表范本
- 内科学教学课件:免疫性血小板减少症(ITP)
- 《生物制品学》课程教学大纲
评论
0/150
提交评论