版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SensitivityAnalysisofEnumeratedTreesofIncreasingBooleanExpressions
SaketAnand,DavidMadigan,RichardMammone,FredRobertsEnumerationandSelectionofOptimumDecisionTreeABC0101AsetofdecisiontreesisconstructedforeachcompleteandmonotonicbooleanfunctionwhereinputsrepresenttestsperformedbyeachsensorABCY00000010010001101000101111011111Y=f(A,B,C)wherefiscompleteandmonotonicThecostofeachtreeisevaluatedandtheoptimumtreeselected.CA0A101B1EnumerationandSelectionofOptimumDecisionTreeThedecisiontreesareconstructedusing4sensorsForthreesensors,thereare114monotonicandcompletebooleanexpressions.Thesecanbeimplementedusing11808distincttrees.Thetreesareevaluatedandrankedusingthecostfunction1.Thetreewiththelowestcostisselectedastheoptimumdecisiontree.1Stroud,P.D.andSaegerKJ.,“EnumerationofIncreasingBooleanExpressionsandAlternativeDigraphImplementationsforDiagnosticApplications〞,ProceedingsVol.IV,Computer,CommunicationandControlTechnologiesCostFunctionusedforevaluatingthedecisiontrees.CTot=
CFalsePositive*PFalsePositive+CFalseNegative*PFalseNegative
+CfixedTheErrorProbabilityoftheentiretreeiscomputedfromtheerrorprobabilitiesoftheindividualsensors.where,
CFalsePositiveisthecostoffalsepositive(TypeIerror)
CFalseNegativeisthecostoffalsenegative(TypeIIerror)
PFalsePositiveistheprobabilityofafalsepositiveoccurring
PFalseNegative
istheprobabilityofafalsenegativeoccurring
Cfixedisthefixedcostofutilizationofthetree.ProbabilityofErrorforIndividualSensorsForithsensor,thetype1(P(Yi=1|X=0))andtype2(P(Yi=0|X=1))errorsaremodeledusingGaussiandistributions.StateofnatureX=0representsabsenceofabomb.StateofnatureX=1representspresenceofabomb.Yirepresentstheoutcomeofsensori.Itischaracterizedby:Ki,discriminationcoefficientTi,decisionthresholdΣi,varianceofthedistributionsKiP(Yi|X=1)P(Yi|X=0)TiCharacteristicsofatypicalsensorReceiverOperatingCharacteristic(ROC)CurveTheROCcurveistheplotoftheProbabilityofcorrectdetection(PD)vs.theProbabilityoffalsepositive(PF).TheROCcurveisusedtoselectanoperatingpoint,whichprovidesthetradeoffbetweenthePDandPFEachsensorhasaROCcurveandthecombinationofthesensorsintoadecisiontreehasacompositeROCcurve.TheparameterwhichisvariedtogetdifferentoperatingpointsontheROCcurveisthesensorThresholdandacombinationofThresholdsforthedecisiontree.EqualErrorRate(EER)istheoperatingpointontheROCcurvewhere,
PF
=
1-PDP(Yi|X=1)P(Yi|X=0)TiKiPDPFOperatingPoint101EERStroud-SaegerExperimentsStroud-SaegerrankedalltreesformedfromfourgivensensorsA,B,CandDaccordingtoincreasingtreecosts.Thecostfunctionusedwasasshowninearlierslides.Valuesusedintheirexperiment:CA=.25;KA=4.37;ΣA=1;CB=.25;KB=1.53;ΣB=1;CC=10;KC=2.9;ΣC=1;CD=30;KD=4.6;ΣD=1;whereCiistheindividualcostofutilizationofsensori,KiisthesensordiscriminationpowerandΣiistherelativespreadfactorforsensori.Valuesofothervariablesarenotknown.CostSensitivitytoGlobalParametersValuesusedintheexperiment:CA=.25;P(YA=1|X=1)=.9856;P(YA=1|X=0)=.0144;CB=1;P(YB=1|X=1)=.7779;P(YB=1|X=0)=.2221;CC=10;P(YC=1|X=1)=.9265;P(YC=1|X=0)=.0735;CD=30;P(YC=1|X=1)=.9893;P(YC=1|X=0)=.0107; whereCiistheindividualcostofutilizationofsensori.Theprobabilitieshavebeencomputedforathresholdcorrespondingtotheequalerrorrate.CFalseNegativetobevariedbetween25millionand500billiondollarsLowandhighestimatesofdirectandindirectcostsincurredduetoafalsenegative.
CFalsePositive
tobevariedbetween180and720dollarsCostincurredduetofalsepositive(4men*(3-6hrs)*(15–30$/hr)P(X=1)tobevariedbetween3/109and1/100,000StructureoftreeswhichcamefirstRankwith3sensors(A,CandD)Treenumber49BooleanExpr:01010111Treenumber37BooleanExpr:00011111acbc10101ab1c001abc0111Treenumber55BooleanExpr:01111111Frequencyofoptimaltreeswith3sensors(A,CandD)whenoneparameterwasvariedConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionP(X=1)=1.281x10-6,CFalsePositive=492.61CFalseNegative375680001111155943201111111P(X=1)=0.8373x10-5,CFalseNegative=4.2681x1011CFalsePositive55994601111111CFalseNegative=4.4747x1011,CFalsePositive=351.9526P(X=1)37540001111155994601111111RandomlyselectedfixedparametervaluesVariationofCTotvs.CFalseNegative
P(X=1)andCFalsePositive
werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative
inthespecifiedrange.RandomlyselectedfixedparametervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.P(X=1)Frequencyofoptimaltreeswith3sensors(A,CandD)whenoneparameterwasvariedFixedparametervaluesselectedatStroudandSaegervaluesConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionP(X=1)=3x10-8,CFalsePositive=600CFalseNegative371000000011111P(X=1)=3x10-8,CFalseNegative=5x1010CFalsePositive371000000011111CFalseNegative=5x1010,CFalsePositive=600P(X=1)4910801010111376940001111155919801111111VariationofCTotvs.CFalseNegative
P(X=1)andCFalsePositive
werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative
inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.P(X=1)VariationofCTotwrtCFalseNegativeandCFalsePositive
CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalseNegativeandCFalsePositive
CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedFixedparametervaluesselectedatStroudandSaegervaluesTreeStructureandcorrespondingBooleanExpressionsTreenumber11785BooleanExpr:Treenumber11605BooleanExpr:a1cd011b1a1bc1d01d01TreeStructureandcorrespondingBooleanExpressionsTreenumber9133BooleanExpr:Treenumber8965BooleanExpr:d01acd011b0d01acd01b01cd01b1TreeStructureandcorrespondingBooleanExpressionsTreenumber6797BooleanExpr:Treenumber2473BooleanExpr:0000000101111111acd0101cd01b10abc0d1cd01b101TreeStructureandcorrespondingBooleanExpressionsTreenumber11305BooleanExpr:ad101cd01b1VariationofCTotvs.CFalseNegative
P(X=1)andCFalsePositive
werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative
inthespecifiedrange.RandomlyselectedfixedparametervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.P(X=1)VariationofCTotvs.CFalseNegative
P(X=1)andCFalsePositive
werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative
inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.P(X=1)Frequencyofoptimaltreeswith4sensorswhentwoparameterswerevaried.Thefixedparameterswererandomlyselected.
RandomlyselectedfixedparametervaluesConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionCFalsePositive=453.6849CFalseNegativeP(X=1)50510000000001111111679718000100010111111189655000010101011111119001700010101011111119017600010101011111119133235000101011111111111605862101010111111111111178510620111111111111111CFalseNegative=4.7485x1010P(X=1),CFalsePositive261710000000111111111679716000100010111111189651210001010101111111900170001010101111111901713000101010111111191333920001010111111111113059901010101011111111160593510101011111111111P(X=1)=0.6344x10-5CFalseNegative,CFalsePositive679720001000101111111896513000101010111111191336500010101111111111130513010101010111111111605792801010111111111111178519790111111111111111VariationofCTotwrtCFalseNegativeandCFalsePositive
CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedRandomlyselectedfixedparametervaluesFrequencyofoptimaltreeswith4sensorswhentwoparameterswerevaried.ThefixedparameterswereselectedattheStroudandSaegervalues.ConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionCFalsePositive=600CFalseNegativeP(X=1)50510000000001111111247320000000101111111250910000000101111111679718000100010111111189651380001010101111111900119000101010111111190177000101010111111191331840001010111111111113056501010101011111111160592320101011111111111117853330111111111111111CFalseNegative=5x1010P(X=1),CFalsePositive67971400010001011111118965117000101010111111190019000101010111111190179000101010111111191333740001010111111111113059601010101011111111160593810101011111111111P(X=1)=3x10-8,CFalseNegative,CFalsePositive505110000000001111111775500000001000011112473420000000101111111261740000000011111111167975580001000101111111896538330001010101111111913354060001010111111111116051050101011111111111VariationofCTotwrtCFalseNegativeandCFalsePositive
CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=
CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)
+CfixedFixedparametervaluesselectedatStroudandSaegervaluesSensitivitytoSensorPerformanceCA=.25;KA=4.37;ΣA=1CB=.25;KB=1.53;ΣB=1CC=15;KC=2.9;ΣC=1CD=30;KD=4.6;ΣD=1Theprobabilityoffalsepositivefortheithsensoriscomputedas:P(Yi=1|X=0)=0.5erfc[Ti/√2]Theprobabilityofdetectionfortheithsensoriscomputedas:P(Yi=1|X=1)=0.5erfc[(Ti-Ki)/(Σ√2)]whereCiistheindividualcostofutilizationofsensori,KiisthediscriminationpowerofthesensorandΣiisthespreadfactorforthesensorFollowingexperimentshavebeendoneusingsensorsA,B,CandDasdescribedbelowbyvaryingtheindividualsensorthresholdsTA,TBandTCfrom-4.0to+4.0instepsof0.4.ThesevalueswerechosensincetheygaveusaROCcurvefortheindividualsensorsoveracompleterangeP(Yi=1|X=0)andP(Yi=1|X=1)Frequencyofoptimaltreeswith3sensorswhentheThresholdswerevaried.Thefixedparameters(CFalsePositive,CFalseNegative,P(X=1))wereselectedrandomly.Fifteentreesattainedrankone,outofwhichtreenumber37wasthemostfrequent.ConstantsTreeNumbersFrequencyBooleanExpressionCFalseNegative==5.0125x109P(X=1)=5.05x10-6andCFalsePositive=450271140001011129146000101112183000000014926401010111513220101011125957000101112314750001010115243700010011384572000111111952560001010115828000000014558730011011155105870111111171339200000111371751500011111Performance(ROC)ofBestDecisionTreeforTreenumber37Performance(ROC)ofBestDecisionTreeforTreenumber37Frequencyofoptimaltreeswith4sensorswhentheThresholdswerevaried.Thefixedparameters(CFalsePositive,CFalseNegative,P(X=1))wereselectedrandomly.244treesattainedrankone,outofwhichtreenumber445wasthemostfrequent.Only15mostfrequentlyoccurringoptimaltreesoutofthe241aretabulatedbelow.ConstantsTreeNumbersFrequencyBooleanExpressionCFalseNegative==4.8668x1011P(X=1)=7.5361x10-6andCFalsePositive=499.754451
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年无抵押专利权质押贷款合同范本3篇
- 2024年度甲方购买乙方航空器材的购销合同2篇
- 2024年度网络小说改编与电影制作委托合同3篇
- 激光测厚度课程设计
- 搬迁方案模板6篇
- 个人独家销售代理合同5篇
- 建筑企业财务工作总结及计划范文
- 2025年山东淄博市张店区卫生健康系统事业单位招聘78人历年管理单位笔试遴选500模拟题附带答案详解
- 2025年山东济宁鱼台县结合事业单位招聘征集高等院校毕业生入伍20人管理单位笔试遴选500模拟题附带答案详解
- 2025年山东枣庄市市中区事业单位招考工作人员管理单位笔试遴选500模拟题附带答案详解
- 广西建设工程造价咨询服务行业收费参考标准
- 2022年四川电力应急预案管理实施细则
- 聚合单元事故案例 汇编
- 《学前教育史》课程思政教学案例(一等奖)
- 年产6000吨白酒生产线项目可行性研究报告申请报告案例
- 绿化起重吊装专项方案
- 矿热炉冶炼工艺操作规程
- 初一初三国家体育锻炼标准评分表
- 执行药品电子监管的管理制度
- F1方程式赛车的空气动力学
- 防尘网施工组织设计
评论
0/150
提交评论