




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学人教A版(理科)一轮复习:统计与概率第十一篇统计与概率第1讲抽样方法与总体分布的估计【2014年高考会这样考】1.考查三种抽样方法及其应用.2.考查频率分布直方图中的相关计算(求解频率、频数等).3.考查用样本估计总体中的样本数据的数字特征(平均数、方差、标准差等).eq\f(对应学生,162)考点梳理三种抽样方法的比较类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率相等,均属于不放回抽样从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分中抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽样各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2.频率分布直方图与茎叶图(1)当总体很大或不便获得时,可以用样本的频率分布去估计总体的频率分布,我们把反映样本频率分布的表格称为频率分布表.绘制频率分布表的步骤为:①求极差;②决定组距和组数;③将数据分组;④列频率分布表.(2)利用直方图反映样本的频率分布,这样的直方图称为频率分布直方图.画频率分布直方图的一般步骤是:①绘制频率分布表;②作直角坐标系,把横轴分成若干段,每一段对应一个组的组距;③在上面标出的各点中,分别以相邻两点为端点的线段为底作矩形,它的高等于该组的eq\f(频率,组距).此时,每个矩形的面积恰好就是该组的频率,显然所有矩形的面积之和为1.3.样本的数字特征(1)众数在样本数据中,出现次数最多的那个数据.(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.(3)平均数样本数据的算术平均数,即eq\x\to(x)=eq\f(1,n)(x1+x2+…+xn).(4)方差与标准差方差:s2=eq\f(1,n)[(x1-eq\x\to(x))2+(x2-eq\x\to(x))2+…+(xn-eq\x\to(x))2].标准差:s=eq\r(\f(1,n)[x1-\x\to(x)2+x2-\x\to(x)2+…+xn-\x\to(x)2]).一条规律三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每个个体被抽到的概率都是eq\f(n,N).两个特性(1)在频率分布表中,频数的和等于样本容量,每一小组的频率等于这一组的频数除以样本容量,各小组频率的和等于1;(2)在频率分布直方图中,小矩形的高等于每一组的频率/组距,每个小矩形的面积等于该组的频率,所有小矩形的面积之和为1.考点自测1.(2012·山东)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为().A.7B.9C.10D.15解析从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为an=9+30(n-1)=30n-21,由451≤30n-21≤750,得eq\f(236,15)≤n≤eq\f(257,10),所以n=16,17,…,25,共有25-16+1=10人,选C.答案C2.(2013·临沂模拟)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,应该在这三校分别抽取的学生人数是().A.30,30,30B.30,45,15C.20,30,10D.30,50,10解析抽取比例是eq\f(90,3600+5400+1800)=eq\f(1,120),故三校分别抽取的学生人数为3600×eq\f(1,120)=30,5400×eq\f(1,120)=45,1800×eq\f(1,120)=15.答案B3.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,19,17,16,14,12,则这一天10名工人生产的零件的中位数是().A.14B.16C.15D.17解析将这组数据从小到大排列得10,12,14,14,15,15,16,17,17,19.故中位数为eq\f(15+15,2)=15.答案C4.(2013·西北工大附中测试)如图是容量为150的样本的频率分布直方图,则样本数据落在[6,10)内的频数为().A.12B.48C.60D.80解析落在[6,10)内的频率为0.08×4=0.32,故频数为0.32×150=48.答案B5.(2013·长沙模拟)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s2=eq\f(1,n)[(x1-eq\x\to(x))2+(x2-eq\x\to(x))2+…+(xn-eq\x\to(x))2],其中eq\x\to(x)为x1,x2,…,xn的平均数)解析eq\x\to(x)=eq\f(1,5)(8+9+10+13+15)=11,s2=eq\f(1,5)×(9+4+1+4+16)=6.8.答案6.8考向一抽样方法【例1】►从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.[审题视点]因为802不能整除80,为了保证“等距”分段,应先剔除2个个体.解由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法,步骤如下:第一步:先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步:将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k=eq\f(800,80)=10个个体;第三步:从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个编号(如5)作为起始编号;第四步:从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.解决系统抽样问题的两个关键步骤为:(1)分段的方法应依据抽取的样本容量而定,即根据定义每段抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.【训练1】(2012·天津)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.解析根据分层抽样的特点求解.从小学中抽取30×eq\f(150,150+75+25)=18所学校;从中学中抽取30×eq\f(75,150+75+25)=9所学校.答案189考向二频率分布直方图的绘制及应用【例2】►某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族的人数占本组的频率第一组[25,30)1200.6第二组[30,35)195p第三组[35,40)1000.5第四组[40,45)a0.4第五组[45,50)300.3第六组[50,55]150.3续表(1)补全频率分布直方图;(2)求n,a,p的值.[审题视点](1)要补全频率分布直方图,关键是计算出第二组的频率;(2)灵活运用关系式:eq\f(频率,组距)×组距=频率,eq\f(频数,样本容量)=频率求解.解(1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以小长方形的高为eq\f(0.3,5)=0.06.频率分布直方图如图所示.(2)第一组的人数为eq\f(120,0.6)=200,频率为0.04×5=0.2,所以n=eq\f(200,0.2)=1000.由(1)知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以p=eq\f(195,300)=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(1)绘制频率分布直方图时需注意:①制作好频率分布表后可以利用各组的频率之和是否为1来检验该表是否正确;②频率分布直方图的纵坐标是eq\f(频率,组距),而不是频率.(2)由频率分布直方图进行相关计算时,需掌握下列关系式:eq\f(频率,组距)×组距=频率.【训练2】(2013·烟台四校联考)据悉2012年山东省高考要将体育成绩作为参考,为此,济南市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0m(精确到0.1m)以上的为合格.把所得数据进行整理后,分成6组,并画出频率分布直方图的一部分如图所示.已知从左到右前5个小组对应矩形的高分别为0.04,0.10,0.14,0.28,0.30,且第6小组的频数是7.(1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出该中位数在第几组内,并说明理由.解(1)由题易知,第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)×1=0.14,∴此次测试的总人数为eq\f(7,0.14)=50.∴这次铅球测试成绩合格的人数为(0.28×1+0.30×1+0.14×1)×50=36.(2)直方图中中位数两侧的矩形面积和相等,即频率和相等,前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内.考向三用样本的数字特征估计总体的数字特征【例3】►甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.[审题视点](1)先通过图象统计出甲、乙二人的成绩;(2)利用公式求出平均数、方差,再分析两人的成绩,作出评价.解(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.eq\x\to(x)甲=eq\f(10+13+12+14+16,5)=13,eq\x\to(x)乙=eq\f(13+14+12+12+14,5)=13,seq\o\al(2,甲)=eq\f(1,5)[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,seq\o\al(2,乙)=eq\f(1,5)[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由seq\o\al(2,甲)>seq\o\al(2,乙)可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,当所得数据平均数不相等时,需先分析平均水平,再计算标准差(方差)分析稳定情况.(2)若给出图形,一方面可以由图形得到相应的样本数据,再计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性大小反映方差(标准差)的大小.【训练3】(2012·陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为eq\x\to(x)甲,eq\x\to(x)乙,中位数分别为m甲,m乙,则().A.eq\x\to(x)甲<eq\x\to(x)乙,m甲>m乙B.eq\x\to(x)甲<eq\x\to(x)乙,m甲<m乙C.eq\x\to(x)甲>eq\x\to(x)乙,m甲>m乙D.eq\x\to(x)甲>eq\x\to(x)乙,m甲<m乙解析eq\x\to(x)甲=eq\f(1,16)(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=eq\f(345,16),eq\x\to(x)乙=eq\f(1,16)(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=eq\f(457,16).∴eq\x\to(x)甲<eq\x\to(x)乙.又∵m甲=20,m乙=29,∴m甲<m乙.答案B方法优化15——快速掌握抽样方法的技巧【命题研究】通过近三年的高考试题分析,考查分层抽样方法的题目较多,其次是系统抽样.题型多为选择题、填空题,有的与统计的其它知识或概率综合考查,常以解答题的形式出现,难度较低.【真题探究】►(2012·江苏)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[教你审题]一审等比例性质;二审抽取的样本容量.[优美解法]高二年级学生人数占总数的eq\f(3,3+3+4)=eq\f(3,10).样本容量为50,则高二年级抽取:50×eq\f(3,10)=15(名)学生.[答案]15[反思]用分层抽样抽样时,分成的各层标准要一致,互不重叠,各层抽取的比例都等于样本容量在总体中的比例,即eq\f(n,N).【试一试】(2013·徐州模拟)从某小学随机抽取100名同学,这些同学身高都不低于100厘米,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).现用分层抽样的方法从身高在[120,130),[130,140),[140,150]三组学生中,选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.解析由(0.005+0.010+0.020+0.035+a)×10=1,得a=0.030,因此[120,130),[130,140),[140,150]三组学生人数分别为:0.3×100=30,0.20×100=20,0.10×100=10,所以,从身高在[140,150]内的学生中选取的人数应为eq\f(10,30+20+10)×18=3.答案3A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2013·西安质检)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是 ().A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53解析样本共30个,中位数为eq\f(45+47,2)=46;显然样本数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.答案A2.(2013·南昌模拟)小波一星期的总开支分布如图(a)所示,一星期的食品开支如图(b)所示,则小波一星期的鸡蛋开支占总开支的百分比为 ().A.30% B.10% C.3% D.不能确定解析由题图(b)可知小波一星期的食品开支共计300元,其中鸡蛋开支30元.又由题图(a)知,一周的食品开支占总开支的30%,则可知一周总开支为1000元,所以鸡蛋开支占总开支的百分比为eq\f(30,1000)×100%=3%.答案C3.(2013·成都模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为().A.101 B.808 C.1212 解析甲社区驾驶员的抽样比例为eq\f(12,96)=eq\f(1,8),四个社区驾驶员总人数的抽样比例为eq\f(12+21+25+43,N)=eq\f(101,N),由eq\f(101,N)=eq\f(1,8),得N=808.答案B4.(2012·安徽)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ().A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差解析由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为eq\f(1,5)×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,eq\f(1,5)×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=eq\f(12,5),C对;甲、乙的成绩的极差均为4,D错.答案C二、填空题(每小题5分,共10分)5.(2013·武夷模拟)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析设第1组抽取的号码为b,则第n组抽取的号码为8(n-1)+b,∴8×(16-1)+b=126,∴b=6,故第1组抽取的号码为6.答案66.(2013·苏州一中月考)某学校为了解学生数学课程的学习情况,在1000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图可估计这1000名学生在该次数学考试中成绩不低于60分的学生人数是________.解析低于60分学生所占频率为(0.002+0.006+0.012)×10=0.2,故低于60分的学生人数为1000×0.2=200,所以不低于60分的学生人数为1000-200=800.答案800三、解答题(共25分)7.(12分)某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴eq\f(10,5)=2,eq\f(70,5)=14,eq\f(20,5)=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.8.(13分)(2012·揭阳调研)某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.解(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为eq\f(2,0.08)=25.(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为eq\f(4,25)÷10=0.016.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.(2013·哈尔滨模拟)一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{an},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是().A.13,12 B.13,13C.12,13解析设等差数列{an}的公差为d(d≠0),a3=8,a1a7=(a3)2=64,(8-2d)(8+4d)=64,(4-d)(2+d)=8,2d-d2=0,又d≠0,故d=2,故样本数据为4,6,8,10,12,14,16,18,20,22,样本的平均数为eq\f(4+22×5,10)=13,中位数为eq\f(12+14,2)=13,故选B.答案B2.(2012·江西)样本(x1,x2,…,xn)的平均数为eq\x\to(x),样本(y1,y2,…,ym)的平均数为eq\x\to(y)(eq\x\to(x)≠eq\x\to(y)).若样本(x1,x2,…,xn,y1,y2,…,ym)的平均数eq\x\to(z)=αeq\x\to(x)+(1-α)eq\x\to(y),其中0<α<eq\f(1,2),则n,m的大小关系为 ().A.n<m B.n>mC.n=m D.不能确定解析依题意得x1+x2+…+xn=neq\x\to(x),y1+y2+…+ym=meq\x\to(y),x1+x2+…+xn+y1+y2+…+ym=(m+n)eq\x\to(z)=(m+n)αeq\x\to(x)+(m+n)(1-α)eq\x\to(y),∴neq\x\to(x)+meq\x\to(y)=(m+n)αeq\x\to(x)+(m+n)(1-α)eq\x\to(y),∴eq\b\lc\{\rc\(\a\vs4\al\co1(n=m+nα,,m=m+n1-α,))于是有n-m=(m+n)[α-(1-α)]=(m+n)(2α-1),∵0<α<eq\f(1,2),∴2α-1<0,∴n-m<0,即m>n.答案A二、填空题(每小题5分,共10分)3.(2013·沈阳质检)沈阳市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________.解析由eq\f(n,600+500+550)=eq\f(11,550),得n=33(人).答案334.(2013·北京西城一模)某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是____________.解析成绩在[16,18]的学生的人数所占比例为eq\f(6+3,1+3+7+6+3)=eq\f(9,20),所以成绩在[16,18]的学生人数为120×eq\f(9,20)=54.答案54三、解答题(共25分)5.(12分)汽车行业是碳排放量比较大的行业之一,欧盟规定,从2012年开始,对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xY160经测算发现,乙类品牌车CO2排放量的均值为eq\x\to(x)乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.解(1)甲类品牌汽车的CO2排放量的平均值eq\x\to(x)甲=eq\f(80+110+120+140+150,5)=120(g/km),甲类品牌汽车的CO2排放量的方差seq\o\al(2,甲)=eq\f(80-1202+110-1202+120-1202+140-1202+150-1202,5)=600.(2)由题意知乙类品牌汽车的CO2排放量的平均值eq\x\to(x)乙=eq\f(100+120+x+y+160,5)=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的CO2排放量的方差seq\o\al(2,乙)=eq\f(100-1202+120-1202+x-1202+220-x-1202+160-1202,5),因为乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,所以seq\o\al(2,乙)<seq\o\al(2,甲),解得90<x<130.6.(13分)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.解(1)由题意,第5组抽出的号码为22.因为k+5×(5-1)=22,所以第1组抽出的号码应该为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为eq\x\to(x)=eq\f(1,10)(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为:s2=eq\f(1,10)(102+12+22+52+72+82+92+62+42+122)=52.(3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).记“体重为76公斤的职工被抽取”为事件A,它包括的事件有(73,76),(76,78),(76,79),(76,81)共4个.故所求概率为P(A)=eq\f(4,10)=eq\f(2,5).第2讲变量间的相关关系与统计案例【2014年高考会这样考】1.考查利用散点图判断变量之间的关系.2.考查线性回归方程的计算或回归分析的思想与方法的应用问题.3.考查独立性检验的基本思想及应用.考点梳理1.相关关系的判断(1)散点图直观反映了两变量的成对观测值之间存在的某种关系,利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中点的分布从整体上看大致在一条直线的附近,我们说变量x和y具有线性相关关系.(2)相关系数r=eq\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\r(\i\su(i=1,n,)xi-\x\to(x)2\i\su(i=1,n,)yi-\x\to(y)2)),当r>0时,两变量正相关,当r<0时,两变量负相关,当|r|≤1且|r|越接近于1,相关程度越高,当|r|≤1且|r|越接近于0,相关程度越低.2.最小二乘法求回归直线方程(1)设线性回归方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),其中,eq\o(b,\s\up6(^))是回归方程的斜率,eq\o(a,\s\up6(^))是截距.eq\b\lc\{\rc\(\a\vs4\al\co1(\o(b,\s\up6(^))=\f(\i\su(i=1,n,)xi-\x\to(x)yi-\x\to(y),\i\su(i=1,n,)xi-\x\to(x)2)=\f(\i\su(i=1,n,x)iyi-n\x\to(x)\x\to(y),\i\su(i=1,n,x)\o\al(2,i)-n\x\to(x)2),,\o(a,\s\up6(^))=\x\to(y)-\o(b,\s\up6(^))\x\to(x).))(2)回归直线一定经过样本的中心点(eq\x\to(x),eq\x\to(y)),据此性质可以解决有关的计算问题.3.独立性检验(1)独立性检验的有关概念①分类变量可用变量的不同“值”表示个体所属的不同类别的变量称为分类变量.②2×2列联表假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d(2)独立性检验利用随机变量K2=eq\f(nad-bc2,a+bc+da+cb+d)(其中n=a+b+c+d为样本容量)来判断“两个变量有关系”的方法称为独立性检验.步骤如下:①计算随机变量K2的观测值k,查下表确定临界值k0:P(K2≥k0)0.500.400.250.150.10k00.4550.7081.3232.0722.706P(K2≥k0)0.050.0250.0100.0050.001k03.8415.0246.6357.87910.828②如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过P(K2≥k0);否则,就认为在犯错误的概率不超过P(K2≥k0)的前提下不能推断“X与Y有关系”.一个区别函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.三个特征(1)回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))中的eq\o(b,\s\up6(^))表示x增加一个单位时,eq\o(y,\s\up6(^))的变化量约为eq\o(b,\s\up6(^)).(2)R2越大,残差平方和越小,即模型的拟合效果越好;R2越小,残差平方和越大,即模型的拟合效果越差.(3)当K2≥3.841时,则有95%的把握说事件A与B有关;当K2≥6.635时,则有99%的把握说事件A与B有关;当K2≤2.706时,则认为事件A与B无关.考点自测1.下列两个变量之间的关系是相关关系的是().A.正方体的棱长与体积B.单位面积的产量为常数时,土地面积与总产量C.日照时间与水稻的亩产量D.电压一定时,电流与电阻解析A,B,D中两个变量间的关系都是确定的,所以是函数关系;C中的两个变量间是相关关系,对于日照时间一定的水稻,仍可以有不同的亩产量,故选C.答案C2.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断().A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析由图(1)可知,各点整体呈递减趋势,x与y负相关;由图(2)可知,各点整体呈递增趋势,u与v正相关.答案C3.(2012·湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为eq\o(y,\s\up6(^))=0.85x-85.71,则下列结论中不正确的是().A.y与x具有正的线性相关关系B.回归直线过样本点的中心(eq\x\to(x),eq\x\to(y))C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg解析根据线性回归方程中各系数的意义求解.由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确.又线性回归方程必过样本中心点(eq\x\to(x),eq\x\to(y)),因此B正确.由线性回归方程中系数的意义知,x每增加1cm,其体重约增加0.85kg,故C正确.当某女生的身高为170cm时,其体重估计值是58.79kg,而不是具体值,因此D不正确.答案D4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是().A.有99%的人认为该栏目优秀B.有99%的人认为该栏目是否优秀与改革有关系C.有99%的把握认为电视栏目是否优秀与改革有关系D.没有理由认为电视栏目是否优秀与改革有关系解析只有K2≥6.635才能有99%的把握认为电视栏目是否优秀与改革有关系,而即使K2≥6.635也只是对“电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关.故D正确.答案D5.(2011·辽宁)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的线性回归方程:eq\o(y,\s\up6(^))=0.254x+0.321.由线性回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析由题意,知其回归系数为0.254,故家庭年收入每增加1万元,年饮食支出平均增加0.254万元.答案0.254
考向一线性相关关系的判断【例1】►下表是某小卖部6天卖出的热茶的杯数与当天气温的对比表.气温/℃261813104-1杯数y202434385064(1)将表中的数据画成散点图;(2)你能依据散点图指出气温与热茶杯数的关系吗?(3)如果气温与卖出热茶杯数近似成线性相关关系的话,请画出一条直线来近似地表示这种线性相关关系.[审题视点](1)用x轴表示气温,y轴表示杯数,逐一画点;(2)根据散点图分析两个变量是否存在相关关系.解(1)画出的散点图如图.(2)从图中可以发现气温和热茶杯数具有相关关系,气温和热茶杯数成负相关,图中的各点大致分布在一条直线的附近,因此气温和杯数近似成线性相关关系.(3)根据不同的标准,可以画出不同的直线来近似表示这种线性相关关系,如让画出的直线上方的点和下方的点数目相等.如图.利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.【训练1】5个学生的数学和物理成绩如下表:学生学科ABCDE数学8075706560物理7066686462画出散点图,并判断它们是否有相关关系.解把数学成绩作为横坐标,把相应的物理成绩作为纵坐标,在直角坐标系中描点(xi,yi)(i=1,2,…,5),作出散点图如图.从图中可以直观地看出数学成绩和物理成绩具有相关关系,且当数学成绩增大时,物理成绩也在由小变大,即它们正相关.考向二线性回归方程及其应用【例2】►(2012·福建)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元88.28.48.68.89销量y/件908483807568(1)求回归直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),其中eq\o(b,\s\up6(^))=-20,eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x);(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[审题视点](1)分别计算eq\x\to(x),eq\x\to(y),利用线性回归方程过点(eq\x\to(x),eq\x\to(y)),代入方程可得解;(2)将已知条件代入可得关于单价x的二次函数,配方可得最大值.解(1)由于eq\x\to(x)=eq\f(1,6)(8+8.2+8.4+8.6+8.8+9)=8.5,eq\x\to(y)=eq\f(1,6)(90+84+83+80+75+68)=80,又eq\o(b,\s\up6(^))=-20,所以eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=80+20×8.5=250,从而回归直线方程为eq\o(y,\s\up6(^))=-20x+250.(2)设工厂获得的利润为L元,依题意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1000=-20eq\b\lc\(\rc\)(\a\vs4\al\co1(x-8.25))2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.求回归直线方程的步骤:(1)依据样本数据画出散点图,确定两个变量具有线性相关关系;(2)计算出eq\x\to(x),eq\x\to(y),eq\i\su(i=1,n,x)eq\o\al(2,i),eq\i\su(i=1,n,x)iyi的值;(3)计算回归系数eq\o(a,\s\up6(^)),eq\o(b,\s\up6(^));(4)写出回归直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)).【训练2】(2013·南昌模拟)以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据.房屋面积x/m211511080135105销售价格y/万元24.821.618.429.222(1)求线性回归方程;(2)据(1)的结果估计当房屋面积为150m2解(1)eq\x\to(x)=eq\f(1,5)×(115+110+80+135+105)=109,eq\x\to(y)=eq\f(1,5)×(24.8+21.6+18.4+29.2+22)=23.2.设所求回归直线方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),则eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,5,)xi-\x\to(x)yi-\x\to(y),\i\su(i=1,5,)xi-\x\to(x)2)=eq\f(308,1570)≈0.1962,∴eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=23.2-109×eq\f(308,1570)≈1.8166.∴所求回归直线方程为eq\o(y,\s\up6(^))=0.1962x+1.8166.(2)由第(1)问可知,当x=150m2eq\o(y,\s\up6(^))=0.1962×150+1.8166=31.2466(万元).考向三独立性检验的基本思想及应用【例3】►在调查男女乘客是否晕机的事件中,已知男乘客晕机为28人,不晕机的也是28人,而女乘客晕机为28人,不晕机的为56人.(1)根据以上数据建立一个2×2的列联表;(2)能否在犯错误的概率不超过0.05的前提下认为晕机与性别有关系?(可能用到的公式:K2=eq\f(nad-bc2,a+bc+da+cb+d),可能用到的数据:P(K2≥3.841)=0.05,P(K2≥5.024)=0.025)[审题视点](1)列2×2列联表;(2)假设是否晕机与性别无关,代入公式求K2的观测值.解(1)2×2列联表如下:晕机不晕机合计男乘客282856女乘客285684合计5684140(2)假设是否晕机与性别无关,则K2的观测值k=eq\f(140×28×56-28×282,56×84×56×84)=eq\f(35,9)≈3.889,P(K2≥3.841)=0.05.所以可以在犯错误的概率不超过0.05的前提下认为晕机与性别有关系.解决独立性检验的应用问题,首先要根据题目条件列出两个变量的2×2列联表,通过计算随机变量K2的观测值k,依据临界值与犯错误的概率得出结论.注意观测值的临界值与概率间的对应关系.【训练3】(2013·东北三校联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列2×2列联表:主食蔬菜主食肉类合计50岁以下50岁以上合计(2)能否有99%的把握认为其亲属的饮食习惯与年龄有关?并写出简要分析.解(1)2×2列联表如下:主食蔬菜主食肉类合计50岁以下481250岁以上16218合计201030(2)因为K2=eq\f(30×8-1282,12×18×20×10)=10>6.635,所以有99%的把握认为其亲属的饮食习惯与年龄有关.方法优化16——求回归直线方程的方法与技巧【命题研究】通过近三年的高考试题分析,独立性检验和回归分析的考查主要是这两种知识的简单应用,以计算和判断为主.有的省市以选择题、填空题形式考查,有的省市以解答题形式考查,难度中等.【真题探究】►(2011·安徽)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20022004200620082010需求量/万吨236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^));(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.[教你审题]分别计算eq\x\to(x),eq\x\to(y),eq\o(b,\s\up6(^)),eq\o(a,\s\up6(^)),把2012代入所求回归直线方程中.[优美解法](1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据处理如下:年份-2006-4-2024需求量-257-21-1101929对处理的数据,容易算得eq\x\to(x)=0,eq\x\to(y)=3.2,eq\o(b,\s\up6(^))=eq\f(-4×-21+-2×-11+2×19+4×29-5×0×3.2,-42+-22+22+42-5×02)=eq\f(260,40)=6.5,eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=3.2.由上述计算结果,知所求回归直线方程为eq\o(y,\s\up6(^))-257=6.5(x-2006)+3.2.即eq\o(y,\s\up6(^))=6.5(x-2006)+260.2.(2)利用所求得的直线方程,可预测2012年的粮食需求量为6.5×(2012-2006)+260.2=6.5×6+260.2=299.2(万吨).[反思]求回归直线方程时,重点考查的是计算能力.若本题用一般法去解,计算更繁琐(如年份、需求量不做如上处理),所以平时训练时遇到数据较大的要考虑有没有更简便的方法解决.【试一试】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,根据试验数据得到如下图所示的散点图,其中x表示零件的个数,y表示加工时间,则y关于x的线性回归方程是________.解析eq\x\to(x)=eq\f(2+3+4+5,4)=3.5,eq\x\to(y)=eq\f(2.5+3+4+4.5,4)=3.5,所以eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,4,x)iyi-4\x\to(x)\x\to(y),\i\su(i=1,4,x)\o\al(2,i)-4\x\to(x)2)=eq\f(2×2.5+3×3+4×4+5×4.5-4×3.52,22+32+42+52-4×3.52)=eq\f(3.5,5)=0.7.eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=3.5-0.7×3.5=1.05,所以线性回归方程为eq\o(y,\s\up6(^))=0.7x+1.05.答案eq\o(y,\s\up6(^))=0.7x+1.05eq\f(对应学生,331)A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2012·新课标全国)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=eq\f(1,2)x+1上,则这组样本数据的样本相关系数为 ().A.-1 B.0 C.eq\f(1,2) D.1解析样本点都在直线上时,其数据的估计值与真实值是相等的,即yi=eq\o(y,\s\up6(^))i,代入相关系数公式r=eq\r(1-\f(\i\su(i=1,n,)yi-\o(y,\s\up6(^))i2,\i\su(i=1,n,)yi-\x\to(y)2))=1.答案D2.(2013·长春调研)已知x,y取值如下表:x014568y1.31.85.66.17.49.3从所得的散点图分析可知:y与x线性相关,且eq\o(y,\s\up6(^))=0.95x+a,则a=().A.1.30 B.1.45 C.1.65 D.1.80解析依题意得,eq\x\to(x)=eq\f(1,6)×(0+1+4+5+6+8)=4,eq\x\to(y)=eq\f(1,6)×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线eq\o(y,\s\up6(^))=0.95x+a必过样本中心点(eq\x\to(x),eq\x\to(y)),即点(4,5.25),于是有5.25=0.95×4+a,由此解得a=1.45,选B.答案B3.(2011·陕西)设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是().A.直线l过点(eq\x\to(x),eq\x\to(y))B.x和y的相关系数为直线l的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同解析由样本的中心(eq\x\to(x),eq\x\to(y))落在回归直线上可知A正确;x和y的相关系数表示为x与y之间的线性相关程度,不表示直线l的斜率,故B错;x和y的相关系数应在-1到1之间,故C错;分布在回归直线两侧的样本点的个数并不绝对平均,即无论样本点个数是奇数还是偶数,故D错.答案A4.(2011·山东)某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))中的eq\o(b,\s\up6(^))为9.4,据此模型预报广告费用为6万元时销售额为().A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元解析eq\x\to(x)=eq\f(4+2+3+5,4)=3.5(万元),eq\x\to(y)=eq\f(49+26+39+54,4)=42(万元),∴eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=42-9.4×3.5=9.1,∴回归方程为eq\o(y,\s\up6(^))=9.4x+9.1,∴当x=6(万元)时,eq\o(y,\s\up6(^))=9.4×6+9.1=65.5(万元).答案B二、填空题(每小题5分,共10分)5.已知施化肥量x与水稻产量y的试验数据如下表,则变量x与变量y是________相关(填“正”或“负”).施化肥量x15202530354045水稻产量y330345365405445450455解析因为散点图能直观地反映两个变量是否具有相关关系,所以画出散点图如图所示:通过观察图象可知变量x与变量y是正相关.答案正6.(2013·唐山统一考试)考古学家通过始祖鸟化石标本发现:其股骨长度x(cm)与肱骨长度y(cm)的线性回归方程为eq\o(y,\s\up6(^))=1.197x-3.660,由此估计,当股骨长度为50cm时,肱骨长度的估计值为________cm.解析根据线性回归方程eq\o(y,\s\up6(^))=1.197x-3.660,将x=50代入得y=56.19,则肱骨长度的估计值为56.19cm.答案56.19三、解答题(共25分)7.(12分)某班主任对全班50名学生进行了作业量多少的调查.数据如下表:认为作业多认为作业不多合计喜欢玩游戏189不喜欢玩游戏815合计(1)请完善上表中所缺的有关数据;(2)试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系?附:P(K2≥k0)0.050.0250.0100.0050.001k03.8415.0246.6357.87910.828K2=eq\f(nad-bc2,a+bc+da+cb+d)解(1)认为作业多认为作业不多合计喜欢玩游戏18927不喜欢玩游戏81523合计262450(2)将表中的数据代入公式K2=eq\f(nad-bc2,a+bc+da+cb+d)得到K2的观测值k=eq\f(50×18×15-8×92,26×24×27×23)≈5.059>5.024,查表知P(K2≥5.024)=0.025,即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系.8.(13分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x3456y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^));(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)解(1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:eq\i\su(i=1,4,x)eq\o\al(2,i)=86,eq\x\to(x)=eq\f(3+4+5+6,4)=4.5(吨),eq\x\to(y)=eq\f(2.5+3+4+4.5,4)=3.5(吨).已知eq\i\su(i=1,4,x)iyi=66.5,所以,由最小二乘法确定的回归方程的系数为:eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,4,x)iyi-4\x\to(x)·\x\to(y),\i\su(i=1,4,x)\o\al(2,i)-4\x\to(x)2)=eq\f(66.5-4×4.5×3.5,86-4×4.52)=0.7,eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=3.5-0.7×4.5=0.35.因此,所求的线性回归方程为eq\o(y,\s\up6(^))=0.7x+0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x/cm174176176176178儿子身高y/cm175175176177177则y对x的线性回归方程为().A.y=x-1 B.y=x+1C.y=88+eq\f(1,2)x D.y=176解析由题意得eq\x\to(x)=eq\f(174+176+176+176+178,5)=176(cm),eq\x\to(y)=eq\f(175+175+176+177+177,5)=176(cm),由于(eq\x\to(x),eq\x\to(y))一定满足线性回归方程,经验证知选C.答案C2.(2013·福州模拟)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程eq\o(y,\s\up6(^))=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))必过(eq\x\to(x),eq\x\to(y));④在一个2×2列联表中,由计算得K2的观测值k=13.079,则在犯错误的概率不超过0.001的前提下认为这两个变量间有关系.其中错误的个数是().A.0B.1C.2本题可以参考独立性检验临界值表P(K2≥k0)0.50.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828解析只有②错误,应该是y平均减少5个单位.答案B二、填空题(每小题5分,共10分)3.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2=eq\f(50×13×20-10×72,23×27×20×30)≈4.844.则认为选修文科与性别有关系出错的可能性为________.解析∵K2≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.答案5%4.(2011·广东)某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.解析由题意父亲身高xcm与儿子身高ycm对应关系如下表:x173170176y170176182则eq\x\to(x)=eq\f(173+170+176,3)=173,eq\x\to(y)=eq\f(170+176+182,3)=176,eq\i\su(i=1,3,)(xi-eq\x\to(x))(yi-eq\x\to(y))=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)(182-176)=18,eq\i\su(i=1,3,)(xi-eq\x\to(x))2=(173-173)2+(170-173)2+(176-173)2=18.∴eq\o(b,\s\up6(^))=eq\f(18,18)=1.∴eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=176-173=3.∴线性回归直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))=x+3.∴可估计孙子身高为182+3=185(cm).答案185三、解答题(共25分)5.(12分)(2013·南通模拟)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x/℃101113128发芽数y/颗2325302616该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)).解(1)设抽到不相邻两组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)=1-eq\f(4,10)=eq\f(3,5).(2)由数据,求得eq\x\to(x)=12,eq\x\to(y)=27.11×25+13×30+12×26=977,112+132+122=434,由公式,求得eq\o(b,\s\up6(^))=eq\f(5,2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(x)=-3.所以y关于x的线性回归方程为eq\o(y,\s\up6(^))=eq\f(5,2)x-3.6.(13分)有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.优秀非优秀总计甲班10乙班30合计105已知从全部105人中随机抽取1人为优秀的概率为eq\f(2,7).(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6号或10号的概率.附K2=eq\f(nad-bc2,a+bc+da+cb+d),P(K2≥k)0.050.01k3.8416.635解(1)优秀非优秀总计甲班104555乙班203050合计3075105(2)根据列联表中的数据,得到k=eq\f(105×10×30-20×452,55×50×30×75)≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6号或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y),则所有的基本事件有(1,1)、(1,2)、(1,3)、…、(6,6),共36个.事件A包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个,∴P(A)=eq\f(8,36)=eq\f(2,9).第3讲随机事件的概率【2014年高考会这样考】1.考查互斥事件、对立事件的概率求法.2.考查条件概率的求法.考点梳理1.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=eq\f(nA,n)为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅P(A∪B)=P(A)+P(B)=13.条件概率及其性质对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=eq\f(PAB,PA).(1)在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=eq\f(nAB,nA).(2)如果B和C是两互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).②若事件B与事件A互为对立事件,则P(A)=1-P(B).【助学·微博】一个关系两个事件对立则一定互斥,两个事件互斥未必对立.两事件对立是这两事件互斥的充分而不必要条件.两种方法求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(eq\x\to(A)),即运用逆向思维(正难则反),特别是“至多”、“至少”型题目,用间接法就显得比较简便.考点自测1.(人教A版习题改编)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是().A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球解析对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个互斥而不对立.答案D2.(2013·广州月考)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则此射手在一次射击中不够8环的概率为().A.0.40B.0.30C.0.60D.0.90解析一次射击不够8环的概率为:1-0.2-0.3-0.1=0.4.答案A3.(2011·陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是().A.eq\f(1,36)B.eq\f(1,9)C.eq\f(5,36)D.eq\f(1,6)解析若用{1,2,3,4,5,6}代表6处景点,显然甲、乙两人选择结果为{1,1}、{1,2}、{1,3}、…、{6,6},共36种;其中满足题意的“同一景点相遇”包括{1,1}、{2,2}、{3,3}、…、{6,6},共6个基本事件,所以所求的概率值为eq\f(1,6).答案D4.(2011·辽宁)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于().A.eq\f(1,8)B.eq\f(1,4)C.eq\f(2,5)D.eq\f(1,2)解析P(A)=eq\f(C\o\al(2,3)+C\o\al(2,2),C\o\al(2,5))=eq\f(4,10)=eq\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 臂神经痛的临床护理
- 2025酒店管理委托合同
- 胃反应性淋巴增生的临床护理
- 2025企业委托代理经营合同范本
- 2025指定赠与合同范文
- 生理学期末测试卷及答案
- 上栗县六年级试卷及答案
- 山东英语八下期末试卷及答案
- MRPⅡ原理专题培训讲义
- 石油开采与能源安全战略考核试卷
- 项目部施工管理实施计划编制任务分工表
- 【2021部编版语文】-三年级下册第七单元教材解读--PPT课件
- 橙色黑板风小学生知识产权科普PPT模板
- 电网公司变电设备带电水冲洗作业实施细则
- 中国供销合作社标识使用手册课件
- Q∕CR 9218-2015 铁路隧道监控量测技术规程
- 甲状腺解剖及正常超声切面ppt课件
- 上海市城市地下空间建设用地审批及房地产登记试行规定
- 蠕墨铸铁项目可行性研究报告写作范文
- “V”法铸造工艺及应用
- 高二年级学业水平考试备考实施方案
评论
0/150
提交评论