版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安市陕西西安高新第二学校数学九上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.2.已知函数是的图像过点,则的值为()A.-2 B.3 C.-6 D.63.将抛物线向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线的表达式为()A. B.C. D.4.如图,点是的边上的一点,若添加一个条件,使与相似,则下列所添加的条件错误的是()A. B. C. D.5.如图,将绕点按逆时针方向旋转后得到,若,则的度数为()A. B. C. D.6.甲、乙、丙、丁四人各进行了次射击测试,他们的平均成绩相同,方差分别是则射击成绩最稳定的是()A.甲 B.乙 C.丙 D.丁7.如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2 B.5 C.7 D.98.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个9.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.10.如图,在△ABC中,∠BAC=65°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C.若C'C∥AB,则∠BAB'的度数为()A.65° B.50° C.80° D.130°二、填空题(每小题3分,共24分)11.已知中,,交于,且,,,,则的长度为________.12.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB=4,则阴影部分的面积是______.13.如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____.14.如图,中,点在边上.若,,,则的长为______.15.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.16.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是________.17.若是方程的一个根,则代数式的值是______.18.正六边形的中心角等于______度.三、解答题(共66分)19.(10分)已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.20.(6分)天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B测得仰角为60°,已知AB=20米,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果精确到0.1米)21.(6分)如图,中,,,平分,交轴于点,点是轴上一点,经过点、,与轴交于点,过点作,垂足为,的延长线交轴于点,(1)求证:为的切线;(2)求的半径.22.(8分)如图1,抛物线与x轴交于A、B两点(点A在x轴的负半轴),与y轴交于点C.抛物线的对称轴交抛物线于点D,交x轴于点E,点P是线段DE上一动点(点P不与DE两端点重合),连接PC、PO.(1)求抛物线的解析式和对称轴;(1)求∠DAO的度数和△PCO的面积;(3)在图1中,连接PA,点Q是PA的中点.过点P作PF⊥AD于点F,连接QE、QF、EF得到图1.试探究:是否存在点P,使得,若存在,请求点P的坐标;若不存在,请说明理由.23.(8分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).24.(8分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调查结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14舞蹈8书法16摄影合计根据以上信息,解答下列问题:(1),.(2)求出的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.25.(10分)金牛区某学校开展“数学走进生活”的活动课,本次任务是测量大楼AB的高度.如图,小组成员选择在大楼AB前的空地上的点C处将无人机垂直升至空中D处,在D处测得楼AB的顶部A处的仰角为,测得楼AB的底部B处的俯角为.已知D处距地面高度为12m,则这个小组测得大楼AB的高度是多少?(结果保留整数.参考数据:,,)26.(10分)如图1,在中,,,,点是边上一个动点(不与、重合),点为射线上一点,且,以点为圆心,为半径作,设.(1)如图2,当点与点重合时,求的值;(2)当点在线段上,如果与的另一个交点在线段上时,设,试求与之间的函数解析式,并写出的取值范围;(3)在点的运动过程中,如果与线段只有一个公共点,请直接写出的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【题目详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【题目点拨】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.2、C【解题分析】直接根据反比例函数图象上点的坐标特征求解.【题目详解】∵反比例函数的图象经过点(-2,3),∴k=-2×3=-1.故选:C.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3、A【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【题目详解】原抛物线的顶点为(0,0),向左平移3个单位,再向上平移1个单位,那么新抛物线的顶点为(−3,1);可设新抛物线的解析式为y=−4(x−h)2+k,代入得:y=−4(x+3)2+1.故选:A.【题目点拨】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.4、D【分析】在与中,已知有一对公共角∠B,只需再添加一组对应角相等,或夹已知等角的两组对应边成比例,即可判断正误.【题目详解】A.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;B.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;C.已知∠B=∠B,若,则可以证明两三角形相似,正确,不符合题意;D.若,但夹的角不是公共等角∠B,则不能证明两三角形相似,错误,符合题意,故选:D.【题目点拨】本题考查相似三角形的判定,熟练掌握相似三角形的判定条件是解答的关键.5、A【分析】根据旋转的性质即可得到结论.【题目详解】解:∵将绕点按逆时针方向旋转后得到,
∴,
∴,
故选:A.【题目点拨】本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.6、C【分析】根据方差的意义,即可得到答案.【题目详解】∵丙的方差最小,∴射击成绩最稳定的是丙,故选C.【题目点拨】本题主要考查方差的意义,掌握方差越小,一组数据越稳定,是解题的关键.7、B【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为1.3,最小值是2.3,可解答.【题目详解】解:连接DN,∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB===13,∴EF的最大值为1.3.∵∠A=90,AD=3,∴DN≥3,∴EF≥2.3,∴EF长度的可能为3;故选:B.【题目点拨】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.8、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【题目详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【题目点拨】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.9、A【解题分析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.10、B【分析】根据平行线的性质可得,然后根据旋转的性质可得,,根据等边对等角可得,利用三角形的内角和定理求出,根据等式的基本性质可得,从而求出结论.【题目详解】解:∵∠BAC=65°,∥AB∴由旋转的性质可得,∴,∴,∴故选B.【题目点拨】此题考查的是平行线的性质、旋转的性质和等腰三角形的性质,掌握平行线的性质、旋转的性质和等边对等角是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,则四边形DGBF是矩形,由矩形的性质得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-1.证明△FEB∽△DEA,根据相似三角形的对应边成比例可求出x的值,进而得到AD,DE的长.在Rt△ADE中,由勾股定理即可得出结论.【题目详解】如图,过B作BF⊥CD于F,BG⊥BF交AD的延长线于G,∴四边形DGBF是矩形,∴BG=DF,DG=FB.∵∠BCD=45°,∴△BFC是等腰直角三角形.∵BC=,∴FC=BF=1.设DE=9x,则CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,∵AC=AB,∴,∴,解得:AD=16x-1.∵FB∥AD,∴△FEB∽△DEA,∴,∴,∴18x1-16x+1=0,解得:x=或x=.当x=时,7x-1<0,不合题意,舍去,∴x=,∴AD=16x-1=6,DE=9x=,∴AE=.故答案为:.【题目点拨】本题考查了矩形的判定与性质以及相似三角形的判定与性质.求出AD=16x-1是解答本题的关键.12、【分析】作辅助线证明△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,利用等边三角形面积公式S=即可解题.【题目详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC是等边三角形,∴∠A=60°,∴△AOD≌△DOE≌△EOB≌△CDE,且都为等边三角形,∵AB=4,即OA=OD=OE=OB=2,易证阴影部分面积=S△CDE==.【题目点拨】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.13、π.【分析】连接AC、AC′,作BM⊥AC于M,由菱形的性质得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性质得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧长公式即可得出结果.【题目详解】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴点C经过的路线长==π故答案为:π【题目点拨】本题考查了菱形的性质、含30°角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键.14、【分析】根据相似三角形对应边成比例即可求得答案.【题目详解】,,,,,解得:故答案为:【题目点拨】本题考查了相似三角形的性质,找准对应边是解题的关键.15、2【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【题目详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【题目点拨】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用.16、②④【解题分析】由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-,y1)与点(,y2)到对称轴的距离可对④进行判断.【题目详解】:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵b=-2a,
∴2a+b=0,所以②正确;
∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),
∴当x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(-,y1)到对称轴的距离比点(,y2)对称轴的距离远,
∴y1<y2,所以④正确.
故答案为:②④.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.17、9【分析】根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.【题目详解】解:∵a是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9.【题目点拨】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.18、60°【分析】根据正n边形中心角的公式直接求解即可.【题目详解】解:正六边形的圆心角等于一个周角,即为,正六边形有6个中心角,所以每个中心角=故答案为:60°【题目点拨】本题考查正六边形,解答本题的关键是掌握正六边形的性质,熟悉正六边形的中心角的概念三、解答题(共66分)19、(1),;(2)对称轴为直线,顶点坐标.【分析】(1)把A点坐标代入一次函数解析式可求得m的值,得出A点坐标,再代入二次函数解析式可得c;(2)将(1)中得出的二次函数的解析式化为顶点式可求得其顶点坐标和对称轴.【题目详解】解:(1)∵点A在一次函数图象上,∴m=-1-4=-5,∵点A在二次函数图象上,∴-5=-1-2+c,解得c=-2;(2)由(1)可知二次函数的解析式为:,∴二次函数图象的对称轴为直线x=1,顶点坐标为(1,-1).【题目点拨】本题考查的知识点是一次函数的性质以及二次函数的性质,熟记各知识点是解此题的关键.20、47.3米【解题分析】试题分析:过点C作CD⊥AB,交AB于点D;设AD=x.本题涉及到两个直角三角形△ADC、△BDC,应利用其公共边CD构造等量关系,解三角形可得AD、BD与x的关系;借助AB=AD-BD构造方程关系式,进而可求出答案.试题解析:过点C作CD⊥AB,交AB于点D;设CD=x,在Rt△ADC中,有AD==CD=x,在Rt△BDC中,有BD=x,又有AB=AD-BD=20;即x-x=20,解得:x=10(3+)≈47.3(米).答:气球离地面的高度CD为47.3米.21、(1)证明见解析;(2)1.【分析】(1)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(2)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论.【题目详解】(1)证明:连接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切线.(2)连接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半径为1【题目点拨】本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1);;(1)45°;;(3)存在,【分析】(1)把C点坐标代入解出解析式,再根据对称轴即可解出.(1)把A、D、E、C点坐标求出后,因为AE=DE,且DE⊥AE,所以∠DAO=,P点y轴的距离等于OE,即可算出△POC的面积.(3)设出PE=m,根据勾股定理用m表示出PA,根据直角三角形斜边中线是斜边的一半可以证明AQ=FQ=QE=QP,所以△AQF和△AQE都是等腰三角形,又因为∠DAO=,再根据角的关系可以证明△FEQ是等腰直角三角形,再根据,解出m即可.可以通过圆的性质,来判断△FEQ是等腰直角三角形,再根据建立等式算出m即可.【题目详解】解:(1)将C代入求得a=,∴抛物线的解析式为;由可求抛物线的对称轴为直线(1)由抛物线可求一些点的坐标:∴AE=DE=3,又DE⊥AE∴△ADE是等腰直角三角形∴∠DAO=45°作PM⊥y轴于M,在对称轴上的点P的横坐标为-1,∴PM=1,又OP=∴△OPC的面积为(3)解:存在点满足题目条件.解法一:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∵QE=AQ,QF=AQ∴∠EAQ=∠AEQ,∠FAQ=∠AFQ∴∠EQP=1∠EAQ,∠FQP=1∠FAQ∴∠EQF=1(∠EAQ+∠FAQ)=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为解法二:设点P的纵坐标为m(0<m<3),则PE=m,∵点Q是PA的中点,∴QE、QF分别是Rt△PAE、Rt△PAF的公共斜边PA上的中线∴QE=QF=AQ=PQ=∴四边形PEAF内接于半径为QE的⊙Q,∴∠EQF=1∠DAO=90°又∴QE=QF∴△EFQ是等腰直角三角形∴△EFQ的面积为由得解得∵0<m<3∴∴在抛物线对称轴上的点P的坐标为【题目点拨】本题考查了用待定系数法求一元二次函数解析式,对称轴,直角三角形的性质,及一元二次函数与三角形综合点存在性的问题,熟练运用相关知识点是解本题的关键.23、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【题目详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【题目点拨】本题考查了用概率的公式来求概率和树状统计图或列表统计图.24、(1)50、28;(2),补全图形见解析;(3)估计选修“声乐”课程的学生有420人;(4)所抽取的2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年桶装水企业社会责任实施合同
- 2024年度大数据安全防护与合规性服务合同3篇
- 2024版光伏发电系统防雷保护设施安装合同3篇
- 2024年度施工班组建筑节能技术承包合同2篇
- 2024年度粉煤灰购销及环保技术服务一体化合同3篇
- 2024版二手房买卖合同含税费分摊条款3篇
- 2024年标准化个人消费贷款购买销售合同版B版
- 2024年款窗帘销售与定制合同
- 2024版体育产业抵押借款合作框架协议3篇
- 2024年度VIP会员预付费储值卡销售与会员增值服务合同3篇
- 山东省济南市2023-2024学年高一上学期1月期末考试 物理 含答案
- 成人重症患者人工气道湿化护理专家共识 解读
- 机器学习(山东联盟)智慧树知到期末考试答案章节答案2024年山东财经大学
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 2024年辅警招聘考试试题库及完整答案(全优)
- 2024年江苏省普通高中学业水平测试小高考生物、地理、历史、政治试卷及答案(综合版)
- 甘蔗制糖简介
- 三秦出版社五年级上册综合实践教案
- 屋顶分布式光伏项目安全文明施工控制措施
- 水泥保证供应实施方案及服务承诺书
- 2022机要密码工作总结机要室工作总结.doc
评论
0/150
提交评论