版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省洛阳市汝阳实验中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=x+的图象是图中的()A. B. C. D.参考答案:C【考点】31:函数的概念及其构成要素.【分析】利用函数的定义域,单调性奇偶性等性质对图象进行判断.【解答】解:因为函数的定义域为{x|x≠0},所以排除A,B.又因为函数为奇函数,所以图象关于原点对称,所以排除D.故选C.【点评】本题主要考查函数图象的识别,要充分利用函数的性质进行判断.2.已知不等式成立的一个充分不必要条件是,则实数的取值范围是(
)
A.
B.
C.或
D.参考答案:B3.下列值等于1的是(
)A
B
C
D参考答案:C略4.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切 B.相交 C.相离 D.不确定参考答案:B【考点】直线与圆的位置关系.【分析】由M在圆外,得到|OM|大于半径,列出不等式,再利用点到直线的距离公式表示出圆心O到直线ax+by=1的距离d,根据列出的不等式判断d与r的大小即可确定出直线与圆的位置关系.【解答】解:∵M(a,b)在圆x2+y2=1外,∴a2+b2>1,∴圆O(0,0)到直线ax+by=1的距离d=<1=r,则直线与圆的位置关系是相交.故选B5.函数的图像的一条对称轴方程是(
)A.
B.
C.
D.
参考答案:B6.设全集,集合,,则(
)A.
B.
C.
D.参考答案:A7.若双曲线的离心率为2,则实数a等于(
)A.2
B.
C.
D.1参考答案:B8.如图,正方体ABCD-A1B1C1D1中,有以下结论:①BD∥平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;④直线B1D1与BC所成的角为45°.其中正确的结论个数是A.1
B.2
C.3
D.4参考答案:D9.在复平面内,复数对应的点位于()A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:D略10.下列程序执行后输出的结果是()A.
–1
B.
0
C.
1
D.2参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知F1,F2是椭圆的左、右焦点,过左焦点F1的直线与椭圆C交于A,B两点,且,,则椭圆C的离心率为________参考答案:【分析】连接,设,利用椭圆性质,得到长度,分别在△和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【详解】设,则,,由,得,,在△中,,又在中,,得故离心率【点睛】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.12.观察下列等式:=(﹣)×,=(﹣)×,=(﹣)×,=(﹣)×,…可推测当n≥3,n∈N*时,=().参考答案:(﹣)×略13.正四棱锥的底面边长为2,侧棱长均为,其正视图和侧视图是全等的等腰三角形,则正视图的周长为.参考答案:2+2【考点】简单空间图形的三视图.【专题】计算题.【分析】几何体的主视图和侧视图是全等的等腰三角形,推知腰是正四棱锥的斜高,求出斜高,即可求出正视图的周长.【解答】解:由于正四棱锥的底面边长为2,侧棱长为,其主视图和侧视图是全等的等腰三角形;所以主视图和侧视图中的腰是正四棱锥的斜高.其长为:则正视图的周长:2+2.故答案是2+2.【点评】本题考查简单几何体的三视图,易错点是:主视图和侧视图是全等的等腰三角形中的腰是正四棱锥的斜高.14.在△ABC中,a2﹣c2+b2=ab,则角C=.参考答案:【考点】余弦定理.【分析】根据余弦定理,结合三角形的内角和,即可得到结论.【解答】解:∵a2﹣c2+b2=ab∴cosC==∵C∈(0,π)∴C=故答案为:.【点评】本题考查余弦定理的运用,考查学生的计算能力,属于基础题.15.(5分)已知复数z满足,则|z+i|(i为虚数单位)的最大值是.参考答案:由,所以复数z对应的点在以(2,0)为圆心,以为半径的圆周上,所以|z+i|的最大值是点(2,0)与点(0,﹣1)的距离加上半径,等于.故答案为.由复数模的几何意义可得复数z对应的点在以(2,0)为圆心,以为半径的圆周上,由此可得|z+i|的最大值是点(2,0)与点(0,﹣1)的距离加上半径.16.一个几何体的三视图如图所示,则该几何体为
。
参考答案:正四棱台略17.观察下列数表:
13
57
9
11
1315
17
19
21
23
25
27
29…
…
…设2017是该表第行的第个数,则_____,_______.参考答案:10,498三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA垂直于平面ABCD,E为PD的中点,PA=2AB.(1)若F为PC的中点,求证:PC⊥平面AEF;(2)求证:EC∥平面PAB.参考答案:证明(1)由题意得PA=CA,∵F为PC的中点,∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,∴CD⊥PC.∵E为PD的中点,F为PC的中点,∴EF∥CD,∴EF⊥PC.∵AF∩EF=F,∴PC⊥平面AEF.(2)方法一如图,取AD的中点M,连接EM,CM.则EM∥PA.∵EM?平面PAB,PA?平面PAB,∴EM∥平面PAB.在Rt△ACD中,∠CAD=60°,MC=AM,∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC?平面PAB,AB?平面PAB,∴MC∥平面PAB.∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC?平面EMC,∴EC∥平面PAB.方法二如图,延长DC、AB,设它们交于点N,连接PN.∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.∵E为PD的中点,∴EC∥PN.∵EC?平面PAB,PN?平面PAB,∴EC∥平面PAB.略19.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.参考答案:【考点】QH:参数方程化成普通方程;KG:直线与圆锥曲线的关系.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.20.已知椭圆,过右焦点且斜率为的直线交椭圆于两点,若以原点为圆心,为半径的圆与直线相切(1)求焦点的坐标;(2)以为邻边的平行四边形中,顶点也在椭圆上,求椭圆的方程.参考答案:(1),直线的方程为则、(2)设由已知得:由,即,点在椭圆上,所以,整理得:,由,所以椭圆方程为.略21.在等差数列{an}中,若a1=25且S9=S17,求数列前多少项和最大.参考答案:略22.已知函数,,.(1)当,时,求函数的最小值;(2)当,时,求证方程在区间(0,2)上有唯一实数根;(3)当时,设,是函数两个不同的极值点,证明:.参考答案:(1)(2)见解析(3)见解析【分析】(1)构造新函数y=,求导判断单调性,得出最小值e.(2)变量分离a=-=h(x),根据函数的单调性求出函数h(x)的最小值,利用a的范围证明在区间(0,2)上有唯一实数根;(3)求出,问题转化为证,令x1﹣x2=t,得到t<0,根据函数的单调性证明即可.【详解】(1)当=0,时,=,求导y’==0的根x=1所以y在(-),(0,1)递减,在(1,+)递增,所以y=e(2)+=0,所以a=-=h(x)H’(x)=-=0的根x=2则h(x)在(0,2)上单调递增,在(2,+∞)上单调递减,所以h(2)是y=h(x)的极大值即最大值,即所以函数f(x)在区间(0,2)上有唯一实数根;
(3)=-F’(x)-2ax-a=0的两根是,∵x1,x2是函数F(x)的两个不同极值点(不妨设x1<x2),∴a>0(若a≤0时,f'(x)>0,即F(x)是R上的增函数,与已知矛盾),且F'(x1)=0,F'(x2)=0.∴,…两式相减得:,…于是要证明,即证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人民医院远程医疗服务系统开发合同(2024版)3篇
- Budd-Chiari综合征的临床护理
- 2024年杯壶行业前景分析:杯壶行业发展趋势推动行业向绿色方向发展
- 2024年度金融服务合同:中小企业融资担保服务3篇
- 2024年度量子计算机研发与产业化合同3篇
- 2024年度二手汽车买卖合同协议书模板3篇
- 2024年度砂石厂信息化建设合同5篇
- 二零二四年度短视频内容创作与分发协议3篇
- 旅游服务-定制旅行方案(2024版)3篇
- 2024年度厂房经营权租赁协议2篇
- 2022年全国各地中考语文考试题(含答案)
- GB∕T 33212-2016 锤上钢质自由锻件 通用技术条件
- 重症脑血管病课件
- 关于综合计算工时工作制的申请报告
- 新世纪大学英语综合教程预备级Unit3-Second-Kind-of-Mind
- 七选五解题技巧和方法-公开课.ppt课件
- 《十四条根本戒》慈城罗珠堪布释
- 第九章新古典学派与新自由主义
- 在市四套班子领导工作务虚会上的讲话
- 辅酶q10软胶囊(2)
- 《冷冲压工艺与模具设计》课程设计
评论
0/150
提交评论